↓ Skip to main content

Phonemic restoration in developmental dyslexia

Overview of attention for article published in Frontiers in Neuroscience, June 2014
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
5 Dimensions

Readers on

mendeley
51 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Phonemic restoration in developmental dyslexia
Published in
Frontiers in Neuroscience, June 2014
DOI 10.3389/fnins.2014.00134
Pubmed ID
Authors

Stephanie N. Del Tufo, Emily B. Myers

Abstract

The comprehension of fluent speech in one's native language requires that listeners integrate the detailed acoustic-phonetic information available in the sound signal with linguistic knowledge. This interplay is especially apparent in the phoneme restoration effect, a phenomenon in which a missing phoneme is "restored" via the influence of top-down information from the lexicon and through bottom-up acoustic processing. Developmental dyslexia is a disorder characterized by an inability to read at the level of one's peers without any clear failure due to environmental influences. In the current study we utilized the phonemic restoration illusion paradigm to examine individual differences in phonemic restoration across a range of reading ability, from very good to dyslexic readers. Results demonstrate that restoration occurs less in those who have high scores on measures of phonological processing. Based on these results, we suggest that the processing or representation of acoustic detail may not be as reliable in poor and dyslexic readers, with the result that lexical information is more likely to override acoustic properties of the stimuli. This pattern of increased restoration could result from a failure of perceptual tuning, in which unstable representations of speech sounds result in the acceptance of non-speech sounds as speech. An additional or alternative theory is that degraded or impaired phonological processing at the speech sound level may reflect architecture that is overly plastic and consequently fails to stabilize appropriately for speech sound representations. Therefore, the inability to separate speech and noise may result as a deficit in separating noise from the acoustic signal.

Timeline

Login to access the full chart related to this output.

If you don’t have an account, click here to discover Explorer

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 51 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United Kingdom 1 2%
United States 1 2%
Unknown 49 96%

Demographic breakdown

Readers by professional status Count As %
Student > Master 10 20%
Student > Ph. D. Student 7 14%
Researcher 6 12%
Student > Postgraduate 4 8%
Student > Bachelor 3 6%
Other 14 27%
Unknown 7 14%
Readers by discipline Count As %
Psychology 20 39%
Neuroscience 6 12%
Agricultural and Biological Sciences 4 8%
Linguistics 3 6%
Social Sciences 3 6%
Other 6 12%
Unknown 9 18%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 04 June 2014.
All research outputs
#22,760,732
of 25,374,917 outputs
Outputs from Frontiers in Neuroscience
#10,137
of 11,541 outputs
Outputs of similar age
#208,719
of 242,199 outputs
Outputs of similar age from Frontiers in Neuroscience
#91
of 111 outputs
Altmetric has tracked 25,374,917 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 11,541 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 10.9. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 242,199 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 111 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.