↓ Skip to main content

A Parcellation Based Nonparametric Algorithm for Independent Component Analysis with Application to fMRI Data

Overview of attention for article published in Frontiers in Neuroscience, January 2016
Altmetric Badge

Mentioned by

twitter
2 X users

Citations

dimensions_citation
5 Dimensions

Readers on

mendeley
18 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
A Parcellation Based Nonparametric Algorithm for Independent Component Analysis with Application to fMRI Data
Published in
Frontiers in Neuroscience, January 2016
DOI 10.3389/fnins.2016.00015
Pubmed ID
Authors

Shanshan Li, Shaojie Chen, Chen Yue, Brian Caffo

Abstract

Independent Component analysis (ICA) is a widely used technique for separating signals that have been mixed together. In this manuscript, we propose a novel ICA algorithm using density estimation and maximum likelihood, where the densities of the signals are estimated via p-spline based histogram smoothing and the mixing matrix is simultaneously estimated using an optimization algorithm. The algorithm is exceedingly simple, easy to implement and blind to the underlying distributions of the source signals. To relax the identically distributed assumption in the density function, a modified algorithm is proposed to allow for different density functions on different regions. The performance of the proposed algorithm is evaluated in different simulation settings. For illustration, the algorithm is applied to a research investigation with a large collection of resting state fMRI datasets. The results show that the algorithm successfully recovers the established brain networks.

Timeline

Login to access the full chart related to this output.

If you don’t have an account, click here to discover Explorer

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 18 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 18 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 7 39%
Researcher 3 17%
Lecturer 1 6%
Professor 1 6%
Student > Doctoral Student 1 6%
Other 2 11%
Unknown 3 17%
Readers by discipline Count As %
Engineering 4 22%
Agricultural and Biological Sciences 2 11%
Psychology 2 11%
Neuroscience 2 11%
Physics and Astronomy 1 6%
Other 3 17%
Unknown 4 22%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 10 February 2016.
All research outputs
#19,944,091
of 25,373,627 outputs
Outputs from Frontiers in Neuroscience
#8,668
of 11,538 outputs
Outputs of similar age
#282,616
of 405,212 outputs
Outputs of similar age from Frontiers in Neuroscience
#124
of 171 outputs
Altmetric has tracked 25,373,627 research outputs across all sources so far. This one is in the 18th percentile – i.e., 18% of other outputs scored the same or lower than it.
So far Altmetric has tracked 11,538 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 10.9. This one is in the 18th percentile – i.e., 18% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 405,212 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 26th percentile – i.e., 26% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 171 others from the same source and published within six weeks on either side of this one. This one is in the 21st percentile – i.e., 21% of its contemporaries scored the same or lower than it.