↓ Skip to main content

EFhd2, a Protein Linked to Alzheimer's Disease and Other Neurological Disorders

Overview of attention for article published in Frontiers in Neuroscience, March 2016
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (82nd percentile)
  • Good Attention Score compared to outputs of the same age and source (79th percentile)

Mentioned by

news
1 news outlet
twitter
3 X users

Citations

dimensions_citation
30 Dimensions

Readers on

mendeley
47 Mendeley
citeulike
1 CiteULike
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
EFhd2, a Protein Linked to Alzheimer's Disease and Other Neurological Disorders
Published in
Frontiers in Neuroscience, March 2016
DOI 10.3389/fnins.2016.00150
Pubmed ID
Authors

Irving E. Vega

Abstract

EFhd2 is a conserved calcium binding protein linked to different neurological disorders and types of cancer. Although, EFhd2 is more abundant in neurons, it is also found in other cell types. The physiological function of this novel protein is still unclear, but it has been shown in vitro to play a role in calcium signaling, apoptosis, actin cytoskeleton, and regulation of synapse formation. Recently, EFhd2 was shown to promote cell motility by modulating the activity of Rac1, Cdc42, and RhoA. Although, EFhd2's role in promoting cell invasion and metastasis is of great interest in cancer biology, this review focusses on the evidence that links EFhd2 to Alzheimer's disease (AD) and other neurological disorders. Altered expression of EFhd2 has been documented in AD, Parkinson's disease, Huntington's disease, Amyotrophic Lateral Sclerosis, and schizophrenia, indicating that Efhd2 gene expression is regulated in response to neuropathological processes. However, the specific role that EFhd2 plays in the pathophysiology of neurological disorders is still poorly understood. Recent studies demonstrated that EFhd2 has structural characteristics similar to amyloid proteins found in neurological disorders. Moreover, EFhd2 co-aggregates and interacts with known neuropathological proteins, such as tau, C9orf72, and Lrrk2. These results suggest that EFhd2 may play an important role in the pathophysiology of neurodegenerative diseases. Therefore, the understanding of EFhd2's role in health and disease could lead to decipher molecular mechanisms that become activated in response to neuronal stress and degeneration.

Timeline

Login to access the full chart related to this output.

If you don’t have an account, click here to discover Explorer

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 47 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 47 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 10 21%
Student > Bachelor 10 21%
Student > Ph. D. Student 6 13%
Student > Doctoral Student 3 6%
Student > Master 3 6%
Other 6 13%
Unknown 9 19%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 13 28%
Agricultural and Biological Sciences 6 13%
Medicine and Dentistry 4 9%
Neuroscience 4 9%
Unspecified 2 4%
Other 9 19%
Unknown 9 19%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 10. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 15 April 2016.
All research outputs
#3,415,350
of 25,374,647 outputs
Outputs from Frontiers in Neuroscience
#2,701
of 11,542 outputs
Outputs of similar age
#53,055
of 315,347 outputs
Outputs of similar age from Frontiers in Neuroscience
#34
of 177 outputs
Altmetric has tracked 25,374,647 research outputs across all sources so far. Compared to these this one has done well and is in the 86th percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 11,542 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 10.9. This one has done well, scoring higher than 75% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 315,347 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 82% of its contemporaries.
We're also able to compare this research output to 177 others from the same source and published within six weeks on either side of this one. This one has done well, scoring higher than 79% of its contemporaries.