↓ Skip to main content

Bidirectional Expression of Metabolic, Structural, and Immune Pathways in Early Myopia and Hyperopia

Overview of attention for article published in Frontiers in Neuroscience, August 2016
Altmetric Badge

About this Attention Score

  • Above-average Attention Score compared to outputs of the same age (64th percentile)
  • Above-average Attention Score compared to outputs of the same age and source (59th percentile)

Mentioned by

twitter
5 X users

Citations

dimensions_citation
44 Dimensions

Readers on

mendeley
34 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Bidirectional Expression of Metabolic, Structural, and Immune Pathways in Early Myopia and Hyperopia
Published in
Frontiers in Neuroscience, August 2016
DOI 10.3389/fnins.2016.00390
Pubmed ID
Authors

Nina Riddell, Loretta Giummarra, Nathan E. Hall, Sheila G. Crewther

Abstract

Myopia (short-sightedness) affects 1.45 billion people worldwide, many of whom will develop sight-threatening secondary disorders. Myopic eyes are characterized by excessive size while hyperopic (long-sighted) eyes are typically small. The biological and genetic mechanisms underpinning the retina's local control of these growth patterns remain unclear. In the present study, we used RNA sequencing to examine gene expression in the retina/RPE/choroid across 3 days of optically-induced myopia and hyperopia induction in chick. Data were analyzed for differential expression of single genes, and Gene Set Enrichment Analysis (GSEA) was used to identify gene sets correlated with ocular axial length and refraction across lens groups. Like previous studies, we found few single genes that were differentially-expressed in a sign-of-defocus dependent manner (only BMP2 at 1 day). Using GSEA, however, we are the first to show that more subtle shifts in structural, metabolic, and immune pathway expression are correlated with the eye size and refractive changes induced by lens defocus. Our findings link gene expression with the morphological characteristics of refractive error, and suggest that physiological stress arising from metabolic and inflammatory pathway activation could increase the vulnerability of myopic eyes to secondary pathologies.

X Demographics

X Demographics

The data shown below were collected from the profiles of 5 X users who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 34 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 34 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 6 18%
Student > Ph. D. Student 5 15%
Student > Bachelor 4 12%
Student > Doctoral Student 3 9%
Student > Postgraduate 3 9%
Other 4 12%
Unknown 9 26%
Readers by discipline Count As %
Medicine and Dentistry 7 21%
Agricultural and Biological Sciences 5 15%
Biochemistry, Genetics and Molecular Biology 3 9%
Neuroscience 3 9%
Nursing and Health Professions 2 6%
Other 5 15%
Unknown 9 26%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 4. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 21 February 2017.
All research outputs
#8,426,836
of 25,373,627 outputs
Outputs from Frontiers in Neuroscience
#5,337
of 11,538 outputs
Outputs of similar age
#123,346
of 348,145 outputs
Outputs of similar age from Frontiers in Neuroscience
#52
of 130 outputs
Altmetric has tracked 25,373,627 research outputs across all sources so far. This one has received more attention than most of these and is in the 66th percentile.
So far Altmetric has tracked 11,538 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 10.9. This one has gotten more attention than average, scoring higher than 53% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 348,145 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 64% of its contemporaries.
We're also able to compare this research output to 130 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 59% of its contemporaries.