↓ Skip to main content

Tamoxifen Activation of Cre-Recombinase Has No Persisting Effects on Adult Neurogenesis or Learning and Anxiety

Overview of attention for article published in Frontiers in Neuroscience, February 2017
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
40 Dimensions

Readers on

mendeley
110 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Tamoxifen Activation of Cre-Recombinase Has No Persisting Effects on Adult Neurogenesis or Learning and Anxiety
Published in
Frontiers in Neuroscience, February 2017
DOI 10.3389/fnins.2017.00027
Pubmed ID
Authors

Peter Rotheneichner, Pasquale Romanelli, Lara Bieler, Sebastian Pagitsch, Pia Zaunmair, Christina Kreutzer, Richard König, Julia Marschallinger, Ludwig Aigner, Sébastien Couillard-Després

Abstract

Adult neurogenesis is a tightly regulated process continuously taking place in the central nervous system of most mammalian species. In neuroscience research, transgenic animals bearing the tamoxifen-inducible CreER(T2)-Lox system are widely used. In this study, we made use of a Nestin-CreER(T2)/R26R-YFP transgenic mouse model in which the CreER(T2) activates the expression of YFP in multipotent neural stem cells upon tamoxifen application. Humoral factors, such as the levels of estrogens, have been reported to affect the hippocampal neurogenesis. The application of tamoxifen, a mixed agonist/antagonist of the estrogen receptor that permeates the blood-brain-barrier, could thus influence adult neurogenesis. Although the functions of adult neurogenesis are yet to be fully deciphered, a reciprocal interaction between rates of neurogenesis on the one hand and learning and mood regulation on the other hand, has been suggested. The impact of tamoxifen on neurogenesis and behavior was therefore addressed following five daily applications according to the open field test, the elevated plus maze, and Morris water maze. In addition, the impact of short-term tamoxifen application on progenitor cell proliferation, morphology, and fate in the neurogenic niche of the dentate gyrus were investigated. Finally, the influence of the route of administration (oral vs. intra-peritoneal) and gender-specific response were scrutinized. The sub-acute analysis did neither reveal significant differences in behavior, such as voluntary motor activity, anxiety behavior, and spatial learning, nor in cell proliferation, cell survival, dendritic arborization or maturation rate within the dentate gyrus between saline solution-, corn oil-, and tamoxifen-treated groups. Finally, neither the route of application, nor the gender of treated mice influenced the response to tamoxifen. We conclude that short tamoxifen treatments used to activate the CreER(T2) system in transgenic mouse models does not have a measurable impact on adult neurogenesis or the here tested behavior, and is therefore appropriate for most studies in the field.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 110 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 110 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 37 34%
Student > Bachelor 12 11%
Researcher 11 10%
Student > Master 9 8%
Student > Doctoral Student 3 3%
Other 9 8%
Unknown 29 26%
Readers by discipline Count As %
Neuroscience 28 25%
Biochemistry, Genetics and Molecular Biology 15 14%
Agricultural and Biological Sciences 14 13%
Medicine and Dentistry 6 5%
Psychology 3 3%
Other 12 11%
Unknown 32 29%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 04 February 2017.
All research outputs
#22,764,772
of 25,382,440 outputs
Outputs from Frontiers in Neuroscience
#10,138
of 11,542 outputs
Outputs of similar age
#365,805
of 424,972 outputs
Outputs of similar age from Frontiers in Neuroscience
#156
of 182 outputs
Altmetric has tracked 25,382,440 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 11,542 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 11.0. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 424,972 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 182 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.