↓ Skip to main content

Deletion of TRPC6 Attenuates NMDA Receptor-Mediated Ca2+ Entry and Ca2+-Induced Neurotoxicity Following Cerebral Ischemia and Oxygen-Glucose Deprivation

Overview of attention for article published in Frontiers in Neuroscience, March 2017
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
3 X users

Citations

dimensions_citation
28 Dimensions

Readers on

mendeley
23 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Deletion of TRPC6 Attenuates NMDA Receptor-Mediated Ca2+ Entry and Ca2+-Induced Neurotoxicity Following Cerebral Ischemia and Oxygen-Glucose Deprivation
Published in
Frontiers in Neuroscience, March 2017
DOI 10.3389/fnins.2017.00138
Pubmed ID
Authors

Jin Chen, Zhaozhong Li, Jeffery T. Hatcher, Qing-Hui Chen, Li Chen, Robert D. Wurster, Sic L. Chan, Zixi Cheng

Abstract

Transient receptor potential canonical 6 (TRPC6) channels are permeable to Na(+) and Ca(2+) and are widely expressed in the brain. In this study, the role of TRPC6 was investigated following ischemia/reperfusion (I/R) and oxygen-glucose deprivation (OGD). We found that TRPC6 expression was increased in wild-type (WT) mice cortical neurons following I/R and in primary neurons with OGD, and that deletion of TRPC6 reduced the I/R-induced brain infarct in mice and the OGD- /neurotoxin-induced neuronal death. Using live-cell imaging to examine intracellular Ca(2+) levels ([Ca(2+)] i ), we found that OGD induced a significant higher increase in glutamate-evoked Ca(2+) influx compared to untreated control and such an increase was reduced by TRPC6 deletion. Enhancement of TRPC6 expression using AdCMV-TRPC6-GFP infection in WT neurons increased [Ca(2+)] i in response to glutamate application compared to AdCMV-GFP control. Inhibition of N-methyl-d-aspartic acid receptor (NMDAR) with MK801 decreased TRPC6-dependent increase of [Ca(2+)] i in TRPC6 infected cells, indicating that such a Ca(2+) influx was NMDAR dependent. Furthermore, TRPC6-dependent Ca(2+) influx was blunted by blockade of Na(+) entry in TRPC6 infected cells. Finally, OGD-enhanced Ca(2+) influx was reduced, but not completely blocked, in the presence of voltage-dependent Na(+) channel blocker tetrodotoxin (TTX) and dl-α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) blocker CNQX. Altogether, we concluded that I/R-induced brain damage was, in part, due to upregulation of TRPC6 in cortical neurons. We postulate that overexpression of TRPC6 following I/R may induce neuronal death partially through TRPC6-dependent Na(+) entry which activated NMDAR, thus leading to a damaging Ca(2+) overload. These findings may provide a potential target for future intervention in stroke-induced brain damage.

Timeline

Login to access the full chart related to this output.

If you don’t have an account, click here to discover Explorer

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 23 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 23 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 6 26%
Student > Master 4 17%
Other 3 13%
Researcher 2 9%
Professor 1 4%
Other 3 13%
Unknown 4 17%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 4 17%
Neuroscience 4 17%
Agricultural and Biological Sciences 3 13%
Pharmacology, Toxicology and Pharmaceutical Science 2 9%
Medicine and Dentistry 2 9%
Other 3 13%
Unknown 5 22%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 13 April 2017.
All research outputs
#15,742,933
of 25,382,440 outputs
Outputs from Frontiers in Neuroscience
#6,691
of 11,542 outputs
Outputs of similar age
#178,800
of 322,922 outputs
Outputs of similar age from Frontiers in Neuroscience
#115
of 193 outputs
Altmetric has tracked 25,382,440 research outputs across all sources so far. This one is in the 37th percentile – i.e., 37% of other outputs scored the same or lower than it.
So far Altmetric has tracked 11,542 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 11.0. This one is in the 39th percentile – i.e., 39% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 322,922 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 43rd percentile – i.e., 43% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 193 others from the same source and published within six weeks on either side of this one. This one is in the 38th percentile – i.e., 38% of its contemporaries scored the same or lower than it.