↓ Skip to main content

Amyloid β-Exposed Human Astrocytes Overproduce Phospho-Tau and Overrelease It within Exosomes, Effects Suppressed by Calcilytic NPS 2143—Further Implications for Alzheimer's Therapy

Overview of attention for article published in Frontiers in Neuroscience, April 2017
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (82nd percentile)
  • High Attention Score compared to outputs of the same age and source (81st percentile)

Mentioned by

news
1 news outlet
twitter
3 X users

Citations

dimensions_citation
90 Dimensions

Readers on

mendeley
121 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Amyloid β-Exposed Human Astrocytes Overproduce Phospho-Tau and Overrelease It within Exosomes, Effects Suppressed by Calcilytic NPS 2143—Further Implications for Alzheimer's Therapy
Published in
Frontiers in Neuroscience, April 2017
DOI 10.3389/fnins.2017.00217
Pubmed ID
Authors

Anna Chiarini, Ubaldo Armato, Emanuela Gardenal, Li Gui, Ilaria Dal Prà

Abstract

The two main drivers of Alzheimer's disease (AD), amyloid-β (Aβ) and hyperphosphorylated Tau (p-Tau) oligomers, cooperatively accelerate AD progression, but a hot debate is still ongoing about which of the two appears first. Here we present preliminary evidence showing that Tau and p-Tau are expressed by untransformed cortical adult human astrocytes in culture and that exposure of such cells to an Aβ42 proxy, Aβ25-35, which binds the calcium-sensing receptor (CaSR) and activates its signaling, significantly increases intracellular p-Tau levels, an effect CaSR antagonist (calcilytic) NPS 2143 wholly hinders. The astrocytes also release both Tau and p-Tau by means of exosomes into the extracellular medium, an activity that could mediate p-Tau diffusion within the brain. Preliminary data also indicate that exosomal levels of p-Tau increase after Aβ25-35 exposure, but remain unchanged in cells pre-treated for 30-min with NPS 2143 before adding Aβ25-35. Thus, our previous and present findings raise the unifying prospect that Aβ•CaSR signaling plays a crucial role in AD development and progression by simultaneously activating (i) the amyloidogenic processing of amyloid precursor holoprotein, whose upshot is a surplus production and secretion of Aβ42 oligomers, and (ii) the GSK-3β-mediated increased production of p-Tau oligomers which are next released extracellularly inside exosomes. Therefore, as calcilytics suppress both effects on Aβ42 and p-Tau metabolic handling, these highly selective antagonists of pathological Aβ•CaSR signaling would effectively halt AD's progressive spread preserving patients' cognition and life quality.

Timeline

Login to access the full chart related to this output.

If you don’t have an account, click here to discover Explorer

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 121 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 121 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 23 19%
Researcher 18 15%
Student > Master 13 11%
Student > Bachelor 12 10%
Student > Doctoral Student 8 7%
Other 18 15%
Unknown 29 24%
Readers by discipline Count As %
Neuroscience 27 22%
Agricultural and Biological Sciences 21 17%
Biochemistry, Genetics and Molecular Biology 18 15%
Medicine and Dentistry 6 5%
Pharmacology, Toxicology and Pharmaceutical Science 2 2%
Other 10 8%
Unknown 37 31%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 11. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 17 May 2017.
All research outputs
#3,223,527
of 25,382,440 outputs
Outputs from Frontiers in Neuroscience
#2,318
of 11,542 outputs
Outputs of similar age
#56,114
of 324,220 outputs
Outputs of similar age from Frontiers in Neuroscience
#38
of 210 outputs
Altmetric has tracked 25,382,440 research outputs across all sources so far. Compared to these this one has done well and is in the 87th percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 11,542 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 11.0. This one has done well, scoring higher than 79% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 324,220 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 82% of its contemporaries.
We're also able to compare this research output to 210 others from the same source and published within six weeks on either side of this one. This one has done well, scoring higher than 81% of its contemporaries.