↓ Skip to main content

Leftward Deviation and Asymmetric Speed of Egocentric Judgment between Left and Right Visual Fields

Overview of attention for article published in Frontiers in Neuroscience, June 2017
Altmetric Badge

Mentioned by

twitter
2 X users

Citations

dimensions_citation
2 Dimensions

Readers on

mendeley
18 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Leftward Deviation and Asymmetric Speed of Egocentric Judgment between Left and Right Visual Fields
Published in
Frontiers in Neuroscience, June 2017
DOI 10.3389/fnins.2017.00364
Pubmed ID
Authors

Ying Zhou, Bing Li, Gang Wang, Mingsha Zhang, Yujun Pan

Abstract

The egocentric reference frame is essential for body orientation and spatial localization of external objects. Recent neuroimaging and lesion studies have revealed that the right hemisphere of humans may play a more dominant role in processing egocentric information than the left hemisphere. However, previous studies of egocentric discrimination mainly focused on assessing the accuracy of egocentric judgment, leaving its timing unexplored. In addition, most previous studies never monitored the subjects' eye position during the experiments, so the influence of eye position on egocentric judgment could not be excluded. In the present study, we systematically assessed the processing of egocentric information in healthy human subjects by measuring the location of their visual subjective straight ahead (SSA) and their manual reaction time (RT) during fixation (monitored by eye tracker). In an egocentric discrimination task, subjects were required to judge the position of a visual cue relative to the subjective mid-sagittal plane and respond as quickly as possible. We found that the SSA of all subjects deviated to the left side of the body mid-sagittal plane. In addition, all subjects but one showed the longest RT at the location closest to the SSA; and in population, the RTs in the left visual field (VF) were longer than that in the right VF. These results might be due to the right hemisphere's dominant role in processing egocentric information, and its more prominent representation of the ipsilateral VF than that of the left hemisphere.

Timeline

Login to access the full chart related to this output.

If you don’t have an account, click here to discover Explorer

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 18 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 18 100%

Demographic breakdown

Readers by professional status Count As %
Student > Master 4 22%
Student > Ph. D. Student 3 17%
Student > Postgraduate 2 11%
Other 1 6%
Lecturer > Senior Lecturer 1 6%
Other 2 11%
Unknown 5 28%
Readers by discipline Count As %
Nursing and Health Professions 3 17%
Psychology 3 17%
Medicine and Dentistry 2 11%
Neuroscience 2 11%
Computer Science 1 6%
Other 3 17%
Unknown 4 22%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 11 July 2017.
All research outputs
#19,951,180
of 25,382,440 outputs
Outputs from Frontiers in Neuroscience
#8,671
of 11,542 outputs
Outputs of similar age
#237,827
of 327,487 outputs
Outputs of similar age from Frontiers in Neuroscience
#154
of 193 outputs
Altmetric has tracked 25,382,440 research outputs across all sources so far. This one is in the 18th percentile – i.e., 18% of other outputs scored the same or lower than it.
So far Altmetric has tracked 11,542 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 11.0. This one is in the 18th percentile – i.e., 18% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 327,487 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 22nd percentile – i.e., 22% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 193 others from the same source and published within six weeks on either side of this one. This one is in the 13th percentile – i.e., 13% of its contemporaries scored the same or lower than it.