↓ Skip to main content

Variational Bayesian Parameter Estimation Techniques for the General Linear Model

Overview of attention for article published in Frontiers in Neuroscience, September 2017
Altmetric Badge

About this Attention Score

  • Good Attention Score compared to outputs of the same age (65th percentile)
  • Above-average Attention Score compared to outputs of the same age and source (59th percentile)

Mentioned by

twitter
8 X users

Citations

dimensions_citation
11 Dimensions

Readers on

mendeley
51 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Variational Bayesian Parameter Estimation Techniques for the General Linear Model
Published in
Frontiers in Neuroscience, September 2017
DOI 10.3389/fnins.2017.00504
Pubmed ID
Authors

Ludger Starke, Dirk Ostwald

Abstract

Variational Bayes (VB), variational maximum likelihood (VML), restricted maximum likelihood (ReML), and maximum likelihood (ML) are cornerstone parametric statistical estimation techniques in the analysis of functional neuroimaging data. However, the theoretical underpinnings of these model parameter estimation techniques are rarely covered in introductory statistical texts. Because of the widespread practical use of VB, VML, ReML, and ML in the neuroimaging community, we reasoned that a theoretical treatment of their relationships and their application in a basic modeling scenario may be helpful for both neuroimaging novices and practitioners alike. In this technical study, we thus revisit the conceptual and formal underpinnings of VB, VML, ReML, and ML and provide a detailed account of their mathematical relationships and implementational details. We further apply VB, VML, ReML, and ML to the general linear model (GLM) with non-spherical error covariance as commonly encountered in the first-level analysis of fMRI data. To this end, we explicitly derive the corresponding free energy objective functions and ensuing iterative algorithms. Finally, in the applied part of our study, we evaluate the parameter and model recovery properties of VB, VML, ReML, and ML, first in an exemplary setting and then in the analysis of experimental fMRI data acquired from a single participant under visual stimulation.

Timeline

Login to access the full chart related to this output.

If you don’t have an account, click here to discover Explorer

X Demographics

X Demographics

The data shown below were collected from the profiles of 8 X users who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 51 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Austria 1 2%
Unknown 50 98%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 17 33%
Researcher 10 20%
Other 6 12%
Student > Master 4 8%
Student > Doctoral Student 3 6%
Other 4 8%
Unknown 7 14%
Readers by discipline Count As %
Psychology 14 27%
Neuroscience 9 18%
Engineering 6 12%
Agricultural and Biological Sciences 3 6%
Mathematics 3 6%
Other 5 10%
Unknown 11 22%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 4. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 12 May 2019.
All research outputs
#7,716,445
of 25,382,440 outputs
Outputs from Frontiers in Neuroscience
#4,877
of 11,542 outputs
Outputs of similar age
#111,547
of 323,373 outputs
Outputs of similar age from Frontiers in Neuroscience
#64
of 161 outputs
Altmetric has tracked 25,382,440 research outputs across all sources so far. This one has received more attention than most of these and is in the 69th percentile.
So far Altmetric has tracked 11,542 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 11.0. This one has gotten more attention than average, scoring higher than 57% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 323,373 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 65% of its contemporaries.
We're also able to compare this research output to 161 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 59% of its contemporaries.