↓ Skip to main content

A Comparative Study on the Detection of Covert Attention in Event-Related EEG and MEG Signals to Control a BCI

Overview of attention for article published in Frontiers in Neuroscience, October 2017
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age

Mentioned by

twitter
3 X users

Citations

dimensions_citation
24 Dimensions

Readers on

mendeley
59 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
A Comparative Study on the Detection of Covert Attention in Event-Related EEG and MEG Signals to Control a BCI
Published in
Frontiers in Neuroscience, October 2017
DOI 10.3389/fnins.2017.00575
Pubmed ID
Authors

Christoph Reichert, Stefan Dürschmid, Hans-Jochen Heinze, Hermann Hinrichs

Abstract

In brain-computer interface (BCI) applications the detection of neural processing as revealed by event-related potentials (ERPs) is a frequently used approach to regain communication for people unable to interact through any peripheral muscle control. However, the commonly used electroencephalography (EEG) provides signals of low signal-to-noise ratio, making the systems slow and inaccurate. As an alternative noninvasive recording technique, the magnetoencephalography (MEG) could provide more advantageous electrophysiological signals due to a higher number of sensors and the magnetic fields not being influenced by volume conduction. We investigated whether MEG provides higher accuracy in detecting event-related fields (ERFs) compared to detecting ERPs in simultaneously recorded EEG, both evoked by a covert attention task, and whether a combination of the modalities is advantageous. In our approach, a detection algorithm based on spatial filtering is used to identify ERP/ERF components in a data-driven manner. We found that MEG achieves higher decoding accuracy (DA) compared to EEG and that the combination of both further improves the performance significantly. However, MEG data showed poor performance in cross-subject classification, indicating that the algorithm's ability for transfer learning across subjects is better in EEG. Here we show that BCI control by covert attention is feasible with EEG and MEG using a data-driven spatial filter approach with a clear advantage of the MEG regarding DA but with a better transfer learning in EEG.

Timeline

Login to access the full chart related to this output.

If you don’t have an account, click here to discover Explorer

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 59 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 59 100%

Demographic breakdown

Readers by professional status Count As %
Student > Master 10 17%
Student > Ph. D. Student 9 15%
Lecturer 6 10%
Student > Doctoral Student 6 10%
Researcher 4 7%
Other 9 15%
Unknown 15 25%
Readers by discipline Count As %
Engineering 16 27%
Computer Science 10 17%
Neuroscience 9 15%
Psychology 3 5%
Earth and Planetary Sciences 1 2%
Other 1 2%
Unknown 19 32%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 25 October 2017.
All research outputs
#15,989,045
of 25,382,440 outputs
Outputs from Frontiers in Neuroscience
#6,984
of 11,542 outputs
Outputs of similar age
#189,118
of 335,261 outputs
Outputs of similar age from Frontiers in Neuroscience
#141
of 179 outputs
Altmetric has tracked 25,382,440 research outputs across all sources so far. This one is in the 36th percentile – i.e., 36% of other outputs scored the same or lower than it.
So far Altmetric has tracked 11,542 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 11.0. This one is in the 38th percentile – i.e., 38% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 335,261 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 43rd percentile – i.e., 43% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 179 others from the same source and published within six weeks on either side of this one. This one is in the 21st percentile – i.e., 21% of its contemporaries scored the same or lower than it.