↓ Skip to main content

Identifying Rodent Resting-State Brain Networks with Independent Component Analysis

Overview of attention for article published in Frontiers in Neuroscience, December 2017
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
45 Dimensions

Readers on

mendeley
106 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Identifying Rodent Resting-State Brain Networks with Independent Component Analysis
Published in
Frontiers in Neuroscience, December 2017
DOI 10.3389/fnins.2017.00685
Pubmed ID
Authors

Dusica Bajic, Michael M. Craig, Chandler R. L. Mongerson, David Borsook, Lino Becerra

Abstract

Rodent models have opened the door to a better understanding of the neurobiology of brain disorders and increased our ability to evaluate novel treatments. Resting-state functional magnetic resonance imaging (rs-fMRI) allows for in vivo exploration of large-scale brain networks with high spatial resolution. Its application in rodents affords researchers a powerful translational tool to directly assess/explore the effects of various pharmacological, lesion, and/or disease states on known neural circuits within highly controlled settings. Integration of animal and human research at the molecular-, systems-, and behavioral-levels using diverse neuroimaging techniques empowers more robust interrogations of abnormal/ pathological processes, critical for evolving our understanding of neuroscience. We present a comprehensive protocol to evaluate resting-state brain networks using Independent Component Analysis (ICA) in rodent model. Specifically, we begin with a brief review of the physiological basis for rs-fMRI technique and overview of rs-fMRI studies in rodents to date, following which we provide a robust step-by-step approach for rs-fMRI investigation including data collection, computational preprocessing, and brain network analysis. Pipelines are interwoven with underlying theory behind each step and summarized methodological considerations, such as alternative methods available and current consensus in the literature for optimal results. The presented protocol is designed in such a way that investigators without previous knowledge in the field can implement the analysis and obtain viable results that reliably detect significant differences in functional connectivity between experimental groups. Our goal is to empower researchers to implement rs-fMRI in their respective fields by incorporating technical considerations to date into a workable methodological framework.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 106 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 106 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 35 33%
Researcher 25 24%
Student > Master 6 6%
Student > Bachelor 6 6%
Professor > Associate Professor 4 4%
Other 11 10%
Unknown 19 18%
Readers by discipline Count As %
Neuroscience 40 38%
Engineering 9 8%
Psychology 6 6%
Agricultural and Biological Sciences 5 5%
Medicine and Dentistry 5 5%
Other 14 13%
Unknown 27 25%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 22 November 2017.
All research outputs
#20,663,600
of 25,382,440 outputs
Outputs from Frontiers in Neuroscience
#9,459
of 11,542 outputs
Outputs of similar age
#338,268
of 443,738 outputs
Outputs of similar age from Frontiers in Neuroscience
#164
of 187 outputs
Altmetric has tracked 25,382,440 research outputs across all sources so far. This one is in the 10th percentile – i.e., 10% of other outputs scored the same or lower than it.
So far Altmetric has tracked 11,542 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 11.0. This one is in the 12th percentile – i.e., 12% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 443,738 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 13th percentile – i.e., 13% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 187 others from the same source and published within six weeks on either side of this one. This one is in the 9th percentile – i.e., 9% of its contemporaries scored the same or lower than it.