↓ Skip to main content

The Effect of Visual Experience on Perceived Haptic Verticality When Tilted in the Roll Plane

Overview of attention for article published in Frontiers in Neuroscience, December 2017
Altmetric Badge

About this Attention Score

  • Good Attention Score compared to outputs of the same age (72nd percentile)
  • Good Attention Score compared to outputs of the same age and source (71st percentile)

Mentioned by

twitter
9 X users

Citations

dimensions_citation
8 Dimensions

Readers on

mendeley
43 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
The Effect of Visual Experience on Perceived Haptic Verticality When Tilted in the Roll Plane
Published in
Frontiers in Neuroscience, December 2017
DOI 10.3389/fnins.2017.00687
Pubmed ID
Authors

Luigi F. Cuturi, Monica Gori

Abstract

The orientation of the body in space can influence perception of verticality leading sometimes to biases consistent with priors peaked at the most common head and body orientation, that is upright. In this study, we investigate haptic perception of verticality in sighted individuals and early and late blind adults when tilted counterclockwise in the roll plane. Participants were asked to perform a stimulus orientation discrimination task with their body tilted to their left ear side 90° relative to gravity. Stimuli were presented by using a motorized haptic bar. In order to test whether different reference frames relative to the head influenced perception of verticality, we varied the position of the stimulus on the body longitudinal axis. Depending on the stimulus position sighted participants tended to have biases away or toward their body tilt. Visually impaired individuals instead show a different pattern of verticality estimations. A bias toward head and body tilt (i.e., Aubert effect) was observed in late blind individuals. Interestingly, no strong biases were observed in early blind individuals. Overall, these results posit visual sensory information to be fundamental in influencing the haptic readout of proprioceptive and vestibular information about body orientation relative to gravity. The acquisition of an idiotropic vector signaling the upright might take place through vision during development. Regarding early blind individuals, independent spatial navigation experience likely enhanced by echolocation behavior might have a role in such acquisition. In the case of participants with late onset blindness, early experience of vision might lead them to anchor their visually acquired priors to the haptic modality with no disambiguation between head and body references as observed in sighted individuals (Fraser et al., 2015). With our study, we aim to investigate haptic perception of gravity direction in unusual body tilts when vision is absent due to visual impairment. Insofar, our findings throw light on the influence of proprioceptive/vestibular sensory information on haptic perceived verticality in blind individuals showing how this phenomenon is affected by visual experience.

Timeline

Login to access the full chart related to this output.

If you don’t have an account, click here to discover Explorer

X Demographics

X Demographics

The data shown below were collected from the profiles of 9 X users who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 43 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 43 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 7 16%
Researcher 7 16%
Student > Master 6 14%
Student > Doctoral Student 4 9%
Student > Bachelor 3 7%
Other 5 12%
Unknown 11 26%
Readers by discipline Count As %
Psychology 8 19%
Medicine and Dentistry 5 12%
Neuroscience 4 9%
Social Sciences 3 7%
Nursing and Health Professions 3 7%
Other 7 16%
Unknown 13 30%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 5. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 18 December 2017.
All research outputs
#6,850,695
of 25,382,440 outputs
Outputs from Frontiers in Neuroscience
#4,441
of 11,542 outputs
Outputs of similar age
#124,080
of 446,025 outputs
Outputs of similar age from Frontiers in Neuroscience
#52
of 183 outputs
Altmetric has tracked 25,382,440 research outputs across all sources so far. This one has received more attention than most of these and is in the 72nd percentile.
So far Altmetric has tracked 11,542 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 11.0. This one has gotten more attention than average, scoring higher than 61% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 446,025 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 72% of its contemporaries.
We're also able to compare this research output to 183 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 71% of its contemporaries.