↓ Skip to main content

Computing Generalized Matrix Inverse on Spiking Neural Substrate

Overview of attention for article published in Frontiers in Neuroscience, March 2018
Altmetric Badge

Mentioned by

twitter
3 X users

Citations

dimensions_citation
5 Dimensions

Readers on

mendeley
30 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Computing Generalized Matrix Inverse on Spiking Neural Substrate
Published in
Frontiers in Neuroscience, March 2018
DOI 10.3389/fnins.2018.00115
Pubmed ID
Authors

Rohit Shukla, Soroosh Khoram, Erik Jorgensen, Jing Li, Mikko Lipasti, Stephen Wright

Abstract

Emerging neural hardware substrates, such as IBM's TrueNorth Neurosynaptic System, can provide an appealing platform for deploying numerical algorithms. For example, a recurrent Hopfield neural network can be used to find the Moore-Penrose generalized inverse of a matrix, thus enabling a broad class of linear optimizations to be solved efficiently, at low energy cost. However, deploying numerical algorithms on hardware platforms that severely limit the range and precision of representation for numeric quantities can be quite challenging. This paper discusses these challenges and proposes a rigorous mathematical framework for reasoning about range and precision on such substrates. The paper derives techniques for normalizing inputs and properly quantizing synaptic weights originating from arbitrary systems of linear equations, so that solvers for those systems can be implemented in a provably correct manner on hardware-constrained neural substrates. The analytical model is empirically validated on the IBM TrueNorth platform, and results show that the guarantees provided by the framework for range and precision hold under experimental conditions. Experiments with optical flow demonstrate the energy benefits of deploying a reduced-precision and energy-efficient generalized matrix inverse engine on the IBM TrueNorth platform, reflecting 10× to 100× improvement over FPGA and ARM core baselines.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 30 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 30 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 9 30%
Researcher 5 17%
Professor 3 10%
Student > Master 3 10%
Student > Postgraduate 2 7%
Other 4 13%
Unknown 4 13%
Readers by discipline Count As %
Engineering 12 40%
Computer Science 4 13%
Neuroscience 4 13%
Physics and Astronomy 2 7%
Nursing and Health Professions 1 3%
Other 4 13%
Unknown 3 10%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 20 March 2018.
All research outputs
#17,292,294
of 25,382,440 outputs
Outputs from Frontiers in Neuroscience
#8,070
of 11,542 outputs
Outputs of similar age
#227,497
of 351,846 outputs
Outputs of similar age from Frontiers in Neuroscience
#204
of 256 outputs
Altmetric has tracked 25,382,440 research outputs across all sources so far. This one is in the 21st percentile – i.e., 21% of other outputs scored the same or lower than it.
So far Altmetric has tracked 11,542 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 11.0. This one is in the 24th percentile – i.e., 24% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 351,846 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 26th percentile – i.e., 26% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 256 others from the same source and published within six weeks on either side of this one. This one is in the 17th percentile – i.e., 17% of its contemporaries scored the same or lower than it.