↓ Skip to main content

Lead-Induced Atypical Parkinsonism in Rats: Behavioral, Electrophysiological, and Neurochemical Evidence for a Role of Noradrenaline Depletion

Overview of attention for article published in Frontiers in Neuroscience, March 2018
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
4 X users

Citations

dimensions_citation
7 Dimensions

Readers on

mendeley
23 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Lead-Induced Atypical Parkinsonism in Rats: Behavioral, Electrophysiological, and Neurochemical Evidence for a Role of Noradrenaline Depletion
Published in
Frontiers in Neuroscience, March 2018
DOI 10.3389/fnins.2018.00173
Pubmed ID
Authors

Mariam Sabbar, Claire Delaville, Philippe De Deurwaerdère, Nouria Lakhdar-Ghazal, Abdelhamid Benazzouz

Abstract

Background: Lead neurotoxicity is a major health problem known as a risk factor for neurodegenerative diseases, including the manifestation of parkinsonism-like disorder. While lead is known to preferentially accumulate in basal ganglia, the mechanisms underlying behavioral disorders remain unknown. Here, we investigated the neurophysiological and biochemical correlates of motor deficits induced by sub-chronic injections of lead. Methods: Sprague Dawely rats were exposed to sub-chronic injections of lead (10 mg/kg, i.p.) or to a single i.p. injection of 50 mg/kg N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine hydrochloride (DSP-4), a drug known to induce selective depletion of noradrenaline. Rats were submitted to a battery of behavioral tests, including the open field for locomotor activity and rotarod for motor coordination. Electrophysiological recordings were carried out in three major basal ganglia nuclei, the subthalamic nucleus (STN), globus pallidus (GP), and substantia nigra pars reticulata (SNr). At the end of experiments, post-mortem tissue level of the three monoamines (dopamine, noradrenaline, and serotonin) and their metabolites has been determined using HPLC. Results: Lead intoxication significantly impaired exploratory and locomotor activity as well as motor coordination. It resulted in a significant reduction in the level of noradrenaline in the cortex and dopamine and its metabolites, DOPAC, and HVA, in the striatum. The tissue level of serotonin and its metabolite 5-HIAA was not affected in the two structures. Similarly, DSP-4, which induced a selective depletion of noradrenaline, significantly decreased exploratory, and locomotor activity as well as motor coordination. L-DOPA treatment did not improve motor deficits induced by lead and DSP-4 in the two animal groups. Electrophysiological recordings showed that both lead and DSP-4 did not change the firing rate but resulted in a switch from the regular normal firing to irregular and bursty discharge patterns of STN neurons. Neither lead nor DSP-4 treatments changed the firing rate and the pattern of GP and SNr neurons. Conclusions: Our findings provide evidence that lead represents a risk factor for inducing parkinsonism-like deficits. As the motor deficits induced by lead were not improved by L-DOPA, we suggest that the deficits may be due to the depletion of noradrenaline and the parallel disorganization of STN neuronal activity.

X Demographics

X Demographics

The data shown below were collected from the profiles of 4 X users who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 23 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 23 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 6 26%
Professor 4 17%
Student > Master 3 13%
Student > Bachelor 2 9%
Other 2 9%
Other 1 4%
Unknown 5 22%
Readers by discipline Count As %
Neuroscience 6 26%
Biochemistry, Genetics and Molecular Biology 2 9%
Pharmacology, Toxicology and Pharmaceutical Science 1 4%
Environmental Science 1 4%
Economics, Econometrics and Finance 1 4%
Other 3 13%
Unknown 9 39%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 25 March 2018.
All research outputs
#15,745,807
of 25,382,440 outputs
Outputs from Frontiers in Neuroscience
#6,691
of 11,542 outputs
Outputs of similar age
#194,996
of 348,698 outputs
Outputs of similar age from Frontiers in Neuroscience
#173
of 268 outputs
Altmetric has tracked 25,382,440 research outputs across all sources so far. This one is in the 37th percentile – i.e., 37% of other outputs scored the same or lower than it.
So far Altmetric has tracked 11,542 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 11.0. This one is in the 39th percentile – i.e., 39% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 348,698 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 42nd percentile – i.e., 42% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 268 others from the same source and published within six weeks on either side of this one. This one is in the 30th percentile – i.e., 30% of its contemporaries scored the same or lower than it.