↓ Skip to main content

Top-Down Cognitive and Linguistic Influences on the Suppression of Spontaneous Otoacoustic Emissions

Overview of attention for article published in Frontiers in Neuroscience, June 2018
Altmetric Badge

Mentioned by

twitter
3 X users

Citations

dimensions_citation
8 Dimensions

Readers on

mendeley
35 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Top-Down Cognitive and Linguistic Influences on the Suppression of Spontaneous Otoacoustic Emissions
Published in
Frontiers in Neuroscience, June 2018
DOI 10.3389/fnins.2018.00378
Pubmed ID
Authors

Viorica Marian, Tuan Q. Lam, Sayuri Hayakawa, Sumitrajit Dhar

Abstract

Auditory sensation is often thought of as a bottom-up process, yet the brain exerts top-down control to affect how and what we hear. We report the discovery that the magnitude of top-down influence varies across individuals as a result of differences in linguistic background and executive function. Participants were 32 normal-hearing individuals (23 female) varying in language background (11 English monolinguals, 10 Korean-English late bilinguals, and 11 Korean-English early bilinguals), as well as cognitive abilities (working memory, cognitive control). To assess efferent control over inner ear function, participants were presented with speech-sounds (e.g., /ba/, /pa/) in one ear while spontaneous otoacoustic emissions (SOAEs) were measured in the contralateral ear. SOAEs are associated with the amplification of sound in the cochlea, and can be used as an index of top-down efferent activity. Individuals with bilingual experience and those with better cognitive control experienced larger reductions in the amplitude of SOAEs in response to speech stimuli, likely as a result of greater efferent suppression of amplification in the cochlea. This suppression may aid in the critical task of speech perception by minimizing the disruptive effects of noise. In contrast, individuals with better working memory exert less control over the cochlea, possibly due to a greater capacity to process complex stimuli at later stages. These findings demonstrate that even peripheral mechanics of auditory perception are shaped by top-down cognitive and linguistic influences.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 35 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 35 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 8 23%
Student > Master 5 14%
Student > Bachelor 4 11%
Researcher 3 9%
Student > Doctoral Student 2 6%
Other 7 20%
Unknown 6 17%
Readers by discipline Count As %
Psychology 7 20%
Neuroscience 6 17%
Medicine and Dentistry 3 9%
Social Sciences 3 9%
Nursing and Health Professions 2 6%
Other 6 17%
Unknown 8 23%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 18 June 2018.
All research outputs
#17,292,294
of 25,382,440 outputs
Outputs from Frontiers in Neuroscience
#8,070
of 11,542 outputs
Outputs of similar age
#221,045
of 342,171 outputs
Outputs of similar age from Frontiers in Neuroscience
#180
of 227 outputs
Altmetric has tracked 25,382,440 research outputs across all sources so far. This one is in the 21st percentile – i.e., 21% of other outputs scored the same or lower than it.
So far Altmetric has tracked 11,542 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 11.0. This one is in the 24th percentile – i.e., 24% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 342,171 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 26th percentile – i.e., 26% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 227 others from the same source and published within six weeks on either side of this one. This one is in the 16th percentile – i.e., 16% of its contemporaries scored the same or lower than it.