↓ Skip to main content

Non-motor Characterization of the Basal Ganglia: Evidence From Human and Non-human Primate Electrophysiology

Overview of attention for article published in Frontiers in Neuroscience, July 2018
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • Good Attention Score compared to outputs of the same age (79th percentile)
  • Above-average Attention Score compared to outputs of the same age and source (64th percentile)

Mentioned by

twitter
11 X users
wikipedia
4 Wikipedia pages

Citations

dimensions_citation
43 Dimensions

Readers on

mendeley
103 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Non-motor Characterization of the Basal Ganglia: Evidence From Human and Non-human Primate Electrophysiology
Published in
Frontiers in Neuroscience, July 2018
DOI 10.3389/fnins.2018.00385
Pubmed ID
Authors

Robert S. Eisinger, Morgan E. Urdaneta, Kelly D. Foote, Michael S. Okun, Aysegul Gunduz

Abstract

Although the basal ganglia have been implicated in a growing list of human behaviors, they include some of the least understood nuclei in the brain. For several decades studies have employed numerous methodologies to uncover evidence pointing to the basal ganglia as a hub of both motor and non-motor function. Recently, new electrophysiological characterization of the basal ganglia in humans has become possible through direct access to these deep structures as part of routine neurosurgery. Electrophysiological approaches for identifying non-motor function have the potential to unlock a deeper understanding of pathways that may inform clinical interventions and particularly neuromodulation. Various electrophysiological modalities can also be combined to reveal functional connections between the basal ganglia and traditional structures throughout the neocortex that have been linked to non-motor behavior. Several reviews have previously summarized evidence for non-motor function in the basal ganglia stemming from behavioral, clinical, computational, imaging, and non-primate animal studies; in this review, instead we turn to electrophysiological studies of non-human primates and humans. We begin by introducing common electrophysiological methodologies for basal ganglia investigation, and then we discuss studies across numerous non-motor domains-emotion, response inhibition, conflict, decision-making, error-detection and surprise, reward processing, language, and time processing. We discuss the limitations of current approaches and highlight the current state of the information.

X Demographics

X Demographics

The data shown below were collected from the profiles of 11 X users who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 103 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 103 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 20 19%
Researcher 16 16%
Student > Bachelor 10 10%
Student > Master 9 9%
Other 7 7%
Other 15 15%
Unknown 26 25%
Readers by discipline Count As %
Neuroscience 26 25%
Psychology 16 16%
Medicine and Dentistry 8 8%
Engineering 7 7%
Biochemistry, Genetics and Molecular Biology 3 3%
Other 11 11%
Unknown 32 31%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 10. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 27 May 2022.
All research outputs
#3,755,762
of 25,385,509 outputs
Outputs from Frontiers in Neuroscience
#3,353
of 11,542 outputs
Outputs of similar age
#71,068
of 340,861 outputs
Outputs of similar age from Frontiers in Neuroscience
#84
of 235 outputs
Altmetric has tracked 25,385,509 research outputs across all sources so far. Compared to these this one has done well and is in the 85th percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 11,542 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 11.0. This one has gotten more attention than average, scoring higher than 70% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 340,861 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 79% of its contemporaries.
We're also able to compare this research output to 235 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 64% of its contemporaries.