↓ Skip to main content

Cerebrovascular Resistance: The Basis of Cerebrovascular Reactivity

Overview of attention for article published in Frontiers in Neuroscience, June 2018
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • Good Attention Score compared to outputs of the same age (72nd percentile)
  • Above-average Attention Score compared to outputs of the same age and source (62nd percentile)

Mentioned by

twitter
12 X users

Citations

dimensions_citation
39 Dimensions

Readers on

mendeley
110 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Cerebrovascular Resistance: The Basis of Cerebrovascular Reactivity
Published in
Frontiers in Neuroscience, June 2018
DOI 10.3389/fnins.2018.00409
Pubmed ID
Authors

James Duffin, Olivia Sobczyk, Larissa McKetton, Adrian Crawley, Julien Poublanc, Lashmi Venkatraghavan, Kevin Sam, W. Alan Mutch, David Mikulis, Joseph A. Fisher

Abstract

The cerebral vascular network regulates blood flow distribution by adjusting vessel diameters, and consequently resistance to flow, in response to metabolic demands (neurovascular coupling) and changes in perfusion pressure (autoregulation). Deliberate changes in carbon dioxide (CO2) partial pressure may be used to challenge this regulation and assess its performance since CO2 also acts to change vessel diameter. Cerebrovascular reactivity (CVR), the ratio of cerebral blood flow (CBF) response to CO2 stimulus is currently used as a performance metric. However, the ability of CVR to reflect the responsiveness of a particular vascular region is confounded by that region's inclusion in the cerebral vascular network, where all regions respond to the global CO2 stimulus. Consequently, local CBF responses reflect not only changes in the local vascular resistance but also the effect of changes in local perfusion pressure resulting from redistribution of flow within the network. As a result, the CBF responses to CO2 take on various non-linear patterns that are not well-described by straight lines. We propose a method using a simple model to convert these CBF response patterns to the pattern of resistance responses that underlie them. The model, which has been used previously to explain the steal phenomenon, consists of two vascular branches in parallel fed by a major artery with a fixed resistance unchanging with CO2. One branch has a reference resistance with a sigmoidal response to CO2, representative of a voxel with a robust response. The other branch has a CBF equal to the measured CBF response to CO2 of any voxel under examination. Using the model to calculate resistance response patterns of the examined branch showed sigmoidal patterns of resistance response, regardless of the measured CBF response patterns. The sigmoid parameters of the resistance response pattern of examined voxels may be mapped to their anatomical location. We show an example for a healthy subject and for a patient with steno-occlusive disease to illustrate. We suggest that these maps provide physiological insight into the regulation of CBF distribution.

X Demographics

X Demographics

The data shown below were collected from the profiles of 12 X users who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 110 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 110 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 18 16%
Student > Ph. D. Student 14 13%
Student > Bachelor 14 13%
Student > Master 10 9%
Other 6 5%
Other 20 18%
Unknown 28 25%
Readers by discipline Count As %
Medicine and Dentistry 25 23%
Neuroscience 17 15%
Engineering 9 8%
Biochemistry, Genetics and Molecular Biology 7 6%
Chemistry 3 3%
Other 12 11%
Unknown 37 34%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 7. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 11 July 2018.
All research outputs
#5,311,777
of 25,385,509 outputs
Outputs from Frontiers in Neuroscience
#4,023
of 11,542 outputs
Outputs of similar age
#94,310
of 341,602 outputs
Outputs of similar age from Frontiers in Neuroscience
#84
of 225 outputs
Altmetric has tracked 25,385,509 research outputs across all sources so far. Compared to these this one has done well and is in the 78th percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 11,542 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 11.0. This one has gotten more attention than average, scoring higher than 65% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 341,602 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 72% of its contemporaries.
We're also able to compare this research output to 225 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 62% of its contemporaries.