↓ Skip to main content

Learning Task-Related Activities From Independent Local-Field-Potential Components Across Motor Cortex Layers

Overview of attention for article published in Frontiers in Neuroscience, June 2018
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
5 X users

Citations

dimensions_citation
11 Dimensions

Readers on

mendeley
28 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Learning Task-Related Activities From Independent Local-Field-Potential Components Across Motor Cortex Layers
Published in
Frontiers in Neuroscience, June 2018
DOI 10.3389/fnins.2018.00429
Pubmed ID
Authors

Gonzalo Martín-Vázquez, Toshitake Asabuki, Yoshikazu Isomura, Tomoki Fukai

Abstract

Motor cortical microcircuits receive inputs from dispersed cortical and subcortical regions in behaving animals. However, how these inputs contribute to learning and execution of voluntary sequential motor behaviors remains elusive. Here, we analyzed the independent components extracted from the local field potential (LFP) activity recorded at multiple depths of rat motor cortex during reward-motivated movement to study their roles in motor learning. Because slow gamma (30-50 Hz), fast gamma (60-120 Hz), and theta (4-10 Hz) oscillations temporally coordinate task-relevant motor cortical activities, we first explored the behavioral state- and layer-dependent coordination of motor behavior in these frequency ranges. Consistent with previous findings, oscillations in the slow and fast gamma bands dominated during distinct movement states, i.e., preparation and execution states, respectively. However, we identified a novel independent component that dominantly appeared in deep cortical layers and exhibited enhanced slow gamma activity during the execution state. Then, we used the four major independent components to train a recurrent network model for the same lever movements as the rats performed. We show that the independent components differently contribute to the formation of various task-related activities, but they also play overlapping roles in motor learning.

X Demographics

X Demographics

The data shown below were collected from the profiles of 5 X users who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 28 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 28 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 5 18%
Student > Ph. D. Student 5 18%
Student > Bachelor 4 14%
Professor 3 11%
Student > Doctoral Student 2 7%
Other 3 11%
Unknown 6 21%
Readers by discipline Count As %
Neuroscience 11 39%
Medicine and Dentistry 2 7%
Computer Science 1 4%
Psychology 1 4%
Agricultural and Biological Sciences 1 4%
Other 3 11%
Unknown 9 32%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 3. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 03 July 2018.
All research outputs
#14,789,745
of 25,385,509 outputs
Outputs from Frontiers in Neuroscience
#6,014
of 11,542 outputs
Outputs of similar age
#175,231
of 342,601 outputs
Outputs of similar age from Frontiers in Neuroscience
#139
of 233 outputs
Altmetric has tracked 25,385,509 research outputs across all sources so far. This one is in the 41st percentile – i.e., 41% of other outputs scored the same or lower than it.
So far Altmetric has tracked 11,542 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 11.0. This one is in the 47th percentile – i.e., 47% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 342,601 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 48th percentile – i.e., 48% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 233 others from the same source and published within six weeks on either side of this one. This one is in the 40th percentile – i.e., 40% of its contemporaries scored the same or lower than it.