↓ Skip to main content

Role of Extracellular Vesicles in Amyotrophic Lateral Sclerosis

Overview of attention for article published in Frontiers in Neuroscience, August 2018
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (81st percentile)
  • Good Attention Score compared to outputs of the same age and source (70th percentile)

Mentioned by

news
1 news outlet
twitter
4 X users

Citations

dimensions_citation
50 Dimensions

Readers on

mendeley
123 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Role of Extracellular Vesicles in Amyotrophic Lateral Sclerosis
Published in
Frontiers in Neuroscience, August 2018
DOI 10.3389/fnins.2018.00574
Pubmed ID
Authors

Deborah Ferrara, Laura Pasetto, Valentina Bonetto, Manuela Basso

Abstract

Amyotrophic Lateral Sclerosis (ALS) is the most common motor neuron disease in adults and primarily targets upper and lower motor neurons. The progression of the disease is mostly mediated by altered intercellular communication in the spinal cord between neurons and glial cells. One of the possible ways by which intercellular communication occurs is through extracellular vesicles (EVs) that are responsible for the horizontal transfer of proteins and RNAs to recipient cells. EVs are nanoparticles released by the plasma membrane and this review will describe all evidence connecting ALS, intercellular miscommunication and EVs. We mainly focus on mutant proteins causing ALS and their accumulation in EVs, along with the propensity of mutant proteins to misfold and propagate through EVs in prion-like behavior. EVs are a promising source of biomarkers and the state of the art in ALS will be discussed along with the gaps and challenges still present in this blooming field of investigation.

X Demographics

X Demographics

The data shown below were collected from the profiles of 4 X users who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 123 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 123 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 33 27%
Researcher 20 16%
Student > Master 10 8%
Student > Doctoral Student 6 5%
Student > Bachelor 5 4%
Other 15 12%
Unknown 34 28%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 30 24%
Neuroscience 28 23%
Agricultural and Biological Sciences 8 7%
Medicine and Dentistry 4 3%
Pharmacology, Toxicology and Pharmaceutical Science 4 3%
Other 12 10%
Unknown 37 30%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 11. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 07 September 2018.
All research outputs
#3,223,975
of 25,385,509 outputs
Outputs from Frontiers in Neuroscience
#2,322
of 11,542 outputs
Outputs of similar age
#61,624
of 341,403 outputs
Outputs of similar age from Frontiers in Neuroscience
#69
of 238 outputs
Altmetric has tracked 25,385,509 research outputs across all sources so far. Compared to these this one has done well and is in the 87th percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 11,542 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 11.0. This one has done well, scoring higher than 79% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 341,403 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 81% of its contemporaries.
We're also able to compare this research output to 238 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 70% of its contemporaries.