↓ Skip to main content

Improving a Bimanual Motor Skill Through Unimanual Training

Overview of attention for article published in Frontiers in Integrative Neuroscience, July 2016
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (85th percentile)
  • High Attention Score compared to outputs of the same age and source (99th percentile)

Mentioned by

twitter
19 X users
facebook
1 Facebook page

Citations

dimensions_citation
4 Dimensions

Readers on

mendeley
69 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Improving a Bimanual Motor Skill Through Unimanual Training
Published in
Frontiers in Integrative Neuroscience, July 2016
DOI 10.3389/fnint.2016.00025
Pubmed ID
Authors

Takuji Hayashi, Daichi Nozaki

Abstract

When we learn a bimanual motor skill (e.g., rowing a boat), we often break it down into unimanual practices (e.g., a rowing drill with the left or right arm). Such unimanual practice is thought to be useful for learning bimanual motor skills efficiently because the learner can concentrate on learning to perform a simpler component. However, it is not so straightforward to assume that unimanual training (UT) improves bimanual performance. We have previously demonstrated that motor memories for reaching movements consist of three different parts: unimanual-specific, bimanual-specific, and overlapping parts. According to this scheme, UT appears to be less effective, as its training effect is only partially transferred to the same limb for bimanual movement. In the present study, counter-intuitively, we demonstrate that, even after the bimanual skill is almost fully learned by means of bimanual training (BT), additional UT could further improve bimanual skill. We hypothesized that this effect occurs because UT increases the memory content in the overlapping part, which might contribute to an increase in the memory for bimanual movement. To test this hypothesis, we examined whether the UT performed after sufficient BT could improve the bimanual performance. Participants practiced performing bimanual reaching movements (BM) in the presence of a novel force-field imposed only on their left arm. As an index for the motor performance, we used the error-clamp method (i.e., after-effect of the left arm) to evaluate the force output to compensate for the force-field during the reaching movement. After sufficient BT, the training effect reached a plateau. However, UT performed subsequently improved the bimanual performance significantly. In contrast, when the same amount of BT was continued, the bimanual performance remained unchanged, highlighting the beneficial effect of UT on bimanual performance. Considering memory structure, we also expected that BT could improve unimanual performance, which was confirmed by another experiment. These results provide a new interpretation of why UT was useful for improving a bimanual skill, and propose a practical strategy for enhancing performance by performing training in various contexts.

X Demographics

X Demographics

The data shown below were collected from the profiles of 19 X users who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 69 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 69 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 12 17%
Researcher 8 12%
Student > Master 8 12%
Student > Bachelor 7 10%
Student > Postgraduate 4 6%
Other 10 14%
Unknown 20 29%
Readers by discipline Count As %
Neuroscience 13 19%
Engineering 12 17%
Sports and Recreations 6 9%
Psychology 4 6%
Biochemistry, Genetics and Molecular Biology 2 3%
Other 8 12%
Unknown 24 35%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 12. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 16 April 2017.
All research outputs
#3,057,998
of 24,980,180 outputs
Outputs from Frontiers in Integrative Neuroscience
#157
of 905 outputs
Outputs of similar age
#52,830
of 363,861 outputs
Outputs of similar age from Frontiers in Integrative Neuroscience
#1
of 11 outputs
Altmetric has tracked 24,980,180 research outputs across all sources so far. Compared to these this one has done well and is in the 87th percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 905 research outputs from this source. They typically receive more attention than average, with a mean Attention Score of 9.9. This one has done well, scoring higher than 82% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 363,861 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 85% of its contemporaries.
We're also able to compare this research output to 11 others from the same source and published within six weeks on either side of this one. This one has done particularly well, scoring higher than 99% of its contemporaries.