↓ Skip to main content

Evidence for a Resting State Network Abnormality in Adults Who Stutter

Overview of attention for article published in Frontiers in Integrative Neuroscience, April 2018
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • Good Attention Score compared to outputs of the same age (70th percentile)
  • Good Attention Score compared to outputs of the same age and source (66th percentile)

Mentioned by

twitter
5 X users
facebook
1 Facebook page
wikipedia
1 Wikipedia page

Citations

dimensions_citation
19 Dimensions

Readers on

mendeley
68 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Evidence for a Resting State Network Abnormality in Adults Who Stutter
Published in
Frontiers in Integrative Neuroscience, April 2018
DOI 10.3389/fnint.2018.00016
Pubmed ID
Authors

Amir H. Ghaderi, Masoud N. Andevari, Paul F. Sowman

Abstract

Neural network-based investigations of stuttering have begun to provide a possible integrative account for the large number of brain-based anomalies associated with stuttering. Here we used resting-state EEG to investigate functional brain networks in adults who stutter (AWS). Participants were 19 AWS and 52 age-, and gender-matched normally fluent speakers. EEGs were recorded and connectivity matrices were generated by LORETA in the theta (4-8 Hz), alpha (8-12 Hz), beta1 (12-20 Hz), and beta2 (20-30 Hz) bands. Small-world propensity (SWP), shortest path, and clustering coefficients were computed for weighted graphs. Minimum spanning tree analysis was also performed and measures were compared by non-parametric permutation test. The results show that small-world topology was evident in the functional networks of all participants. Three graph indices (diameter, clustering coefficient, and shortest path) exhibited significant differences between groups in the theta band and one [maximum betweenness centrality (BC)] measure was significantly different between groups in the beta2 band. AWS show higher BC than control in right temporal and inferior frontal areas and lower BC in the right primary motor cortex. Abnormal functional networks during rest state suggest an anomaly of DMN activity in AWS. Furthermore, functional segregation/integration deficits in the theta network are evident in AWS. These deficits reinforce the hypothesis that there is a neural basis for abnormal executive function in AWS. Increased beta2 BC in the right speech-motor related areas confirms previous evidence that right audio-speech areas are over-activated in AWS. Decreased beta2 BC in the right primary motor cortex is discussed in relation to abnormal neural mechanisms associated with time perception in AWS.

X Demographics

X Demographics

The data shown below were collected from the profiles of 5 X users who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 68 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 68 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 14 21%
Student > Master 12 18%
Student > Ph. D. Student 10 15%
Professor 5 7%
Student > Bachelor 3 4%
Other 8 12%
Unknown 16 24%
Readers by discipline Count As %
Psychology 11 16%
Neuroscience 11 16%
Engineering 4 6%
Agricultural and Biological Sciences 3 4%
Social Sciences 3 4%
Other 14 21%
Unknown 22 32%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 6. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 19 January 2021.
All research outputs
#5,672,380
of 23,577,761 outputs
Outputs from Frontiers in Integrative Neuroscience
#233
of 871 outputs
Outputs of similar age
#95,643
of 327,764 outputs
Outputs of similar age from Frontiers in Integrative Neuroscience
#4
of 12 outputs
Altmetric has tracked 23,577,761 research outputs across all sources so far. Compared to these this one has done well and is in the 75th percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 871 research outputs from this source. They typically receive more attention than average, with a mean Attention Score of 9.6. This one has gotten more attention than average, scoring higher than 73% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 327,764 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 70% of its contemporaries.
We're also able to compare this research output to 12 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 66% of its contemporaries.