↓ Skip to main content

Novel Insights Into the Mechanisms of Abdominal Pain in Obstructive Bowel Disorders

Overview of attention for article published in Frontiers in Integrative Neuroscience, June 2018
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age

Mentioned by

twitter
3 X users

Citations

dimensions_citation
15 Dimensions

Readers on

mendeley
32 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Novel Insights Into the Mechanisms of Abdominal Pain in Obstructive Bowel Disorders
Published in
Frontiers in Integrative Neuroscience, June 2018
DOI 10.3389/fnint.2018.00023
Pubmed ID
Authors

Xuan-Zheng Shi, You-Min Lin, Shrilakshmi Hegde

Abstract

Obstructive bowel disorders (OBD) are characterized by lumen distention due to mechanical or functional obstruction in the gut. Abdominal pain is one of the main symptoms in OBD. In this article, we aim to critically review the potential mechanisms for acute and chronic pain in bowel obstruction (BO). While clustered contractions and associated increase of intraluminal pressure may account for colicky pain in simple obstruction, ischemia may be involved in acute pain in severe conditions such as closed loop obstruction. Recent preclinical studies discovered that visceral sensitivity is increased in BO, and visceral hypersensitivity may underlie the mechanisms of chronic abdominal pain in BO. Mounting evidence suggests that lumen distension, as a circumferential mechanical stretch, alters gene expression (mechano-transcription) in the distended bowel, and mechano-transcription of nociceptive and inflammatory mediators plays a critical role in the development of visceral hypersensitivity in BO. Mechano-transcription of nerve growth factor (NGF) in gut smooth muscle cells is found to increase voltage-gated Na+ channel (Nav) activity of the primary sensory neurons by up-regulating expression of TTX-resistant Nav1.8, whereas mechanical stretch-induced brain-derived neurotrophic factor (BDNF) reduces Kv currents especially A-type (IA) currents by down-regulating expression of specific IA subtypes such as Kv1.4. The NGF and BDNF mediated changes in gene expression and channel functions in the primary sensory neurons may constitute the main mechanisms of visceral hypersensitivity in OBD. In addition, mechanical stretch-induced COX-2 and other inflammatory mediators in the gut may also contribute to abdominal pain by activating and sensitizing nociceptors.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 32 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 32 100%

Demographic breakdown

Readers by professional status Count As %
Student > Bachelor 5 16%
Other 3 9%
Student > Doctoral Student 2 6%
Student > Ph. D. Student 2 6%
Student > Postgraduate 2 6%
Other 6 19%
Unknown 12 38%
Readers by discipline Count As %
Medicine and Dentistry 10 31%
Nursing and Health Professions 2 6%
Engineering 2 6%
Immunology and Microbiology 1 3%
Psychology 1 3%
Other 4 13%
Unknown 12 38%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 21 May 2019.
All research outputs
#14,354,487
of 23,090,520 outputs
Outputs from Frontiers in Integrative Neuroscience
#505
of 858 outputs
Outputs of similar age
#184,861
of 328,959 outputs
Outputs of similar age from Frontiers in Integrative Neuroscience
#14
of 16 outputs
Altmetric has tracked 23,090,520 research outputs across all sources so far. This one is in the 37th percentile – i.e., 37% of other outputs scored the same or lower than it.
So far Altmetric has tracked 858 research outputs from this source. They typically receive more attention than average, with a mean Attention Score of 8.5. This one is in the 39th percentile – i.e., 39% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 328,959 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 43rd percentile – i.e., 43% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 16 others from the same source and published within six weeks on either side of this one. This one is in the 12th percentile – i.e., 12% of its contemporaries scored the same or lower than it.