↓ Skip to main content

NPAS3 Regulates Transcription and Expression of VGF: Implications for Neurogenesis and Psychiatric Disorders

Overview of attention for article published in Frontiers in Molecular Neuroscience, November 2016
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
15 Dimensions

Readers on

mendeley
25 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
NPAS3 Regulates Transcription and Expression of VGF: Implications for Neurogenesis and Psychiatric Disorders
Published in
Frontiers in Molecular Neuroscience, November 2016
DOI 10.3389/fnmol.2016.00109
Pubmed ID
Authors

Dongxue Yang, Wenbo Zhang, Arshad Padhiar, Yao Yue, Yonghui Shi, Tiezheng Zheng, Kaspar Davis, Yu Zhang, Min Huang, Yuyuan Li, Li Sha

Abstract

Neuronal PAS domain protein 3 (NPAS3) and VGF (VGF Nerve Growth Factor (NGF) Inducible) are important for neurogenesis and psychiatric disorders. Previously, we have demonstrated that NPAS3 regulates VGF at the transcriptional level. In this study, VGF (non-acronymic) was found regulated by NPAS3 in neuronal stem cells. However, the underlying mechanism of this regulation remains unclear. The aim of this study was to explore the correlation of NPAS3 and VGF, and their roles in neural cell proliferation, in the context of psychiatric illnesses. First, we focused on the structure of NPAS3, to identify the functional domain of NPAS3. Truncated NPAS3 lacking transactivation domain was also found to activate VGF, which suggested that not only transactivation domain but other structural motifs were also involved in the regulation. Second, Mutated enhancer box (E-box) of VGF promoter showed a significant response to this basic helix-loop-helix (bHLH) transcription factor, which suggested an indirect regulatory mechanism for controlling VGF expression by NPAS3. κB site within VGF promoter was identified for VGF activation induced by NPAS3, apart from direct binding to E-box. Furthermore, ectopically expressed NPAS3 in PC12 cells produced parallel responses for nuclear factor kappa-light-chain-enhancer of activated B cells [NF-κB (P65)] expression, which specifies that NPAS3 regulates VGF through the NF-κB signaling pathway. Over-expression of NPAS3 also enhances the cell proliferation, which can be blocked by knockdown of VGF. Finally, NPAS3 was found to influence proliferation of neural cells through VGF. Therefore, downstream signaling pathways that are responsible for NPAS3-VGF induced proliferation via glutamate receptors were explored. Combining this work and published literature, a potential network composed by NPAS3, NF-κB, Brain-Derived Neurotrophic Factor (BDNF), NGF and VGF, was proposed. This network collectively detailed how NPAS3 connects with VGF and intersected neural cell proliferation, synaptic activity and psychiatric disorders.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 25 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 25 100%

Demographic breakdown

Readers by professional status Count As %
Student > Master 6 24%
Researcher 5 20%
Student > Bachelor 3 12%
Student > Doctoral Student 2 8%
Student > Ph. D. Student 2 8%
Other 5 20%
Unknown 2 8%
Readers by discipline Count As %
Neuroscience 8 32%
Biochemistry, Genetics and Molecular Biology 6 24%
Agricultural and Biological Sciences 5 20%
Medicine and Dentistry 3 12%
Pharmacology, Toxicology and Pharmaceutical Science 1 4%
Other 0 0%
Unknown 2 8%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 25 November 2016.
All research outputs
#20,351,881
of 22,899,952 outputs
Outputs from Frontiers in Molecular Neuroscience
#2,482
of 2,894 outputs
Outputs of similar age
#270,519
of 312,900 outputs
Outputs of similar age from Frontiers in Molecular Neuroscience
#46
of 64 outputs
Altmetric has tracked 22,899,952 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 2,894 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 5.7. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 312,900 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 64 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.