↓ Skip to main content

Memory Training Program Decreases the Circulating Level of Cortisol and Pro-inflammatory Cytokines in Healthy Older Adults

Overview of attention for article published in Frontiers in Molecular Neuroscience, July 2017
Altmetric Badge

About this Attention Score

  • Above-average Attention Score compared to outputs of the same age (64th percentile)
  • Good Attention Score compared to outputs of the same age and source (75th percentile)

Mentioned by

twitter
7 X users

Citations

dimensions_citation
7 Dimensions

Readers on

mendeley
50 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Memory Training Program Decreases the Circulating Level of Cortisol and Pro-inflammatory Cytokines in Healthy Older Adults
Published in
Frontiers in Molecular Neuroscience, July 2017
DOI 10.3389/fnmol.2017.00233
Pubmed ID
Authors

Mirko Pesce, Raffaella Tatangelo, Irene La Fratta, Alessia Rizzuto, Giovanna Campagna, Cinzia Turli, Alessio Ferrone, Sara Franceschelli, Lorenza Speranza, Maria C Verrocchio, Maria A De Lutiis, Mario Felaco, Alfredo Grilli

Abstract

Aging cognitive decline has been associated to impairment of the Hypothalamus Pituitary Adrenals (HPA) axis activity and a higher level of the systemic inflammation. However, little is known about the molecules driving this process at peripheral level. In addition, the cognitive function is to some extent modifiable with Memory Training (MT) programs, even among older adults and beyond. The study aims to evaluate whether MT could contribute to ameliorate cognitive performance and modulate the HPA axis activity as well the low level inflammation in the aging phenotype. Whether the phosphatase WIP-1, a negative regulator for inflammation, is involved in this process was also investigated. We recruited 31 young adults (19-28, years of age) and 62 older adults aged over 60. Thirty-two older adults were submitted to 6-months of MT program (EG), and 28 older adults were no treated and used as Control Group (CG). Global cognitive functioning (MMSE score), verbal and visual memory, and attention were assessed at baseline (T0) and after 6-months (T1). At the same time, plasmatic level of Cortisol (C), IL-1β, IL-18, IL-6, and the expression of WIP-1 mRNA and protein in ex vivo Peripheral Blood Mononuclear Cells were analyzed in young adults at T0, as well in older adults at T0 and T1. Together, the results suggest that MT improves the global cognitive functionality, verbal and visual memory, as well as the level of attention. At the same time we observed a decrease of the plasmatic level of C, of the cytokines, and an increase of the expression of mRNA and protein of WIP-1. The analysis of correlations highlighted that the level of the mRNA of WIP-1 was positively associated to the MMSE score, and negatively to the C and cytokine levels. In conclusion, we purpose the MT as tool that could help support successful aging through the improving of memory, attention and global cognitive function performance. Furthermore, this approach could participate to maintain lower the peripheral levels of the C and pro-inflammatory cytokines. The WIP-1 as a potential new target of the pathophysiology of aging is theorized.

X Demographics

X Demographics

The data shown below were collected from the profiles of 7 X users who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 50 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 50 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 6 12%
Student > Master 6 12%
Student > Bachelor 6 12%
Student > Doctoral Student 2 4%
Unspecified 2 4%
Other 8 16%
Unknown 20 40%
Readers by discipline Count As %
Medicine and Dentistry 6 12%
Psychology 5 10%
Biochemistry, Genetics and Molecular Biology 4 8%
Nursing and Health Professions 4 8%
Neuroscience 4 8%
Other 6 12%
Unknown 21 42%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 4. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 09 August 2017.
All research outputs
#7,166,897
of 23,577,654 outputs
Outputs from Frontiers in Molecular Neuroscience
#975
of 3,025 outputs
Outputs of similar age
#111,231
of 317,483 outputs
Outputs of similar age from Frontiers in Molecular Neuroscience
#26
of 105 outputs
Altmetric has tracked 23,577,654 research outputs across all sources so far. This one has received more attention than most of these and is in the 69th percentile.
So far Altmetric has tracked 3,025 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 5.7. This one has gotten more attention than average, scoring higher than 67% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 317,483 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 64% of its contemporaries.
We're also able to compare this research output to 105 others from the same source and published within six weeks on either side of this one. This one has done well, scoring higher than 75% of its contemporaries.