↓ Skip to main content

Transcription Factor NFAT5 Promotes Glioblastoma Cell-driven Angiogenesis via SBF2-AS1/miR-338-3p-Mediated EGFL7 Expression Change

Overview of attention for article published in Frontiers in Molecular Neuroscience, September 2017
Altmetric Badge

Mentioned by

twitter
2 X users

Citations

dimensions_citation
59 Dimensions

Readers on

mendeley
22 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Transcription Factor NFAT5 Promotes Glioblastoma Cell-driven Angiogenesis via SBF2-AS1/miR-338-3p-Mediated EGFL7 Expression Change
Published in
Frontiers in Molecular Neuroscience, September 2017
DOI 10.3389/fnmol.2017.00301
Pubmed ID
Authors

Hai Yu, Jian Zheng, Xiaobai Liu, Yixue Xue, Shuyuan Shen, Lini Zhao, Zhen Li, Yunhui Liu

Abstract

Glioblastoma (GBM) is the most aggressive primary intracranial tumor of adults and confers a poor prognosis due to high vascularization. Hence anti-angiogenic therapy has become a promising strategy for GBM treatment. In this study, the transcription factor nuclear factor of activated T-cells 5 (NFAT5) was significantly elevated in glioma samples and GBM cell lines, and positively correlated with glioma WHO grades. Knockdown of NFAT5 inhibited GBM cell-driven angiogenesis. Furthermore, long non-coding RNA SBF2 antisense RNA 1 (SBF2-AS1) was upregulated in glioma samples and knockdown of SBF2-AS1 impaired GBM-induced angiogenesis. Downregulation of NFAT5 decreased SBF2-AS1 expression at transcriptional level. In addition, knockdown of SBF2-AS1 repressed GBM cell-driven angiogenesis via enhancing the inhibitory effect of miR-338-3p on EGF like domain multiple 7 (EGFL7). In vivo study demonstrated that the combination of NFAT5 knockdown and SBF2-AS1 knockdown produced the smallest xenograft volume and the lowest microvessel density. NFAT5/SBF2-AS1/miR-338-3p/EGFL7 pathway may provide novel targets for glioma anti-angiogenic treatment.

Timeline

Login to access the full chart related to this output.

If you don’t have an account, click here to discover Explorer

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 22 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 22 100%

Demographic breakdown

Readers by professional status Count As %
Student > Doctoral Student 4 18%
Researcher 3 14%
Student > Ph. D. Student 2 9%
Professor > Associate Professor 2 9%
Student > Master 1 5%
Other 2 9%
Unknown 8 36%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 4 18%
Medicine and Dentistry 3 14%
Agricultural and Biological Sciences 2 9%
Pharmacology, Toxicology and Pharmaceutical Science 1 5%
Neuroscience 1 5%
Other 1 5%
Unknown 10 45%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 07 October 2017.
All research outputs
#17,916,739
of 23,003,906 outputs
Outputs from Frontiers in Molecular Neuroscience
#2,073
of 2,909 outputs
Outputs of similar age
#228,338
of 318,503 outputs
Outputs of similar age from Frontiers in Molecular Neuroscience
#81
of 116 outputs
Altmetric has tracked 23,003,906 research outputs across all sources so far. This one is in the 19th percentile – i.e., 19% of other outputs scored the same or lower than it.
So far Altmetric has tracked 2,909 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 5.7. This one is in the 21st percentile – i.e., 21% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 318,503 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 23rd percentile – i.e., 23% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 116 others from the same source and published within six weeks on either side of this one. This one is in the 19th percentile – i.e., 19% of its contemporaries scored the same or lower than it.