↓ Skip to main content

BDNF/trkB Induction of Calcium Transients through Cav2.2 Calcium Channels in Motoneurons Corresponds to F-actin Assembly and Growth Cone Formation on β2-Chain Laminin (221)

Overview of attention for article published in Frontiers in Molecular Neuroscience, October 2017
Altmetric Badge

Mentioned by

twitter
2 X users

Citations

dimensions_citation
26 Dimensions

Readers on

mendeley
34 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
BDNF/trkB Induction of Calcium Transients through Cav2.2 Calcium Channels in Motoneurons Corresponds to F-actin Assembly and Growth Cone Formation on β2-Chain Laminin (221)
Published in
Frontiers in Molecular Neuroscience, October 2017
DOI 10.3389/fnmol.2017.00346
Pubmed ID
Authors

Benjamin Dombert, Stefanie Balk, Patrick Lüningschrör, Mehri Moradi, Rajeeve Sivadasan, Lena Saal-Bauernschubert, Sibylle Jablonka

Abstract

Spontaneous Ca(2+) transients and actin dynamics in primary motoneurons correspond to cellular differentiation such as axon elongation and growth cone formation. Brain-derived neurotrophic factor (BDNF) and its receptor trkB support both motoneuron survival and synaptic differentiation. However, in motoneurons effects of BDNF/trkB signaling on spontaneous Ca(2+) influx and actin dynamics at axonal growth cones are not fully unraveled. In our study we addressed the question how neurotrophic factor signaling corresponds to cell autonomous excitability and growth cone formation. Primary motoneurons from mouse embryos were cultured on the synapse specific, β2-chain containing laminin isoform (221) regulating axon elongation through spontaneous Ca(2+) transients that are in turn induced by enhanced clustering of N-type specific voltage-gated Ca(2+) channels (Cav2.2) in axonal growth cones. TrkB-deficient (trkBTK(-/-)) mouse motoneurons which express no full-length trkB receptor and wildtype motoneurons cultured without BDNF exhibited reduced spontaneous Ca(2+) transients that corresponded to altered axon elongation and defects in growth cone morphology which was accompanied by changes in the local actin cytoskeleton. Vice versa, the acute application of BDNF resulted in the induction of spontaneous Ca(2+) transients and Cav2.2 clustering in motor growth cones, as well as the activation of trkB downstream signaling cascades which promoted the stabilization of β-actin via the LIM kinase pathway and phosphorylation of profilin at Tyr129. Finally, we identified a mutual regulation of neuronal excitability and actin dynamics in axonal growth cones of embryonic motoneurons cultured on laminin-221/211. Impaired excitability resulted in dysregulated axon extension and local actin cytoskeleton, whereas upon β-actin knockdown Cav2.2 clustering was affected. We conclude from our data that in embryonic motoneurons BDNF/trkB signaling contributes to axon elongation and growth cone formation through changes in the local actin cytoskeleton accompanied by increased Cav2.2 clustering and local calcium transients. These findings may help to explore cellular mechanisms which might be dysregulated during maturation of embryonic motoneurons leading to motoneuron disease.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 34 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 34 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 8 24%
Student > Bachelor 7 21%
Student > Postgraduate 2 6%
Researcher 2 6%
Professor 2 6%
Other 3 9%
Unknown 10 29%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 9 26%
Neuroscience 8 24%
Agricultural and Biological Sciences 2 6%
Medicine and Dentistry 2 6%
Psychology 1 3%
Other 2 6%
Unknown 10 29%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 16 November 2023.
All research outputs
#19,490,402
of 24,825,035 outputs
Outputs from Frontiers in Molecular Neuroscience
#2,329
of 3,245 outputs
Outputs of similar age
#243,824
of 334,786 outputs
Outputs of similar age from Frontiers in Molecular Neuroscience
#71
of 119 outputs
Altmetric has tracked 24,825,035 research outputs across all sources so far. This one is in the 18th percentile – i.e., 18% of other outputs scored the same or lower than it.
So far Altmetric has tracked 3,245 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.1. This one is in the 21st percentile – i.e., 21% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 334,786 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 22nd percentile – i.e., 22% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 119 others from the same source and published within six weeks on either side of this one. This one is in the 25th percentile – i.e., 25% of its contemporaries scored the same or lower than it.