↓ Skip to main content

Phosphorylation at S153 as a Functional Switch of Phosphatidylethanolamine Binding Protein 1 in Cerebral Ischemia-Reperfusion Injury in Rats

Overview of attention for article published in Frontiers in Molecular Neuroscience, October 2017
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
16 Dimensions

Readers on

mendeley
14 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Phosphorylation at S153 as a Functional Switch of Phosphatidylethanolamine Binding Protein 1 in Cerebral Ischemia-Reperfusion Injury in Rats
Published in
Frontiers in Molecular Neuroscience, October 2017
DOI 10.3389/fnmol.2017.00358
Pubmed ID
Authors

Zhong Wang, Jiyuan Bu, Xiyang Yao, Chenglin Liu, Haitao Shen, Xiang Li, Haiying Li, Gang Chen

Abstract

This study aimed to estimate the role of phosphatidylethanolamine binding protein 1 (PEBP1) in cerebral ischemia-reperfusion (I/R) injury and the underlying mechanisms. Middle cerebral artery occlusion/reperfusion (MCAO/R) model in adult male Sprague Dawley rats (250-280 g) were established and cultured neurons were exposed to oxygen-glucose deprivation/reoxygenation (OGD/R) to mimic I/R injury in vitro. Expression vectors encoding wild-type PEBP1 and PEBP1 with Ser153Ala mutation (S153A), PEBP1 specific siRNAs, and human recombinant PEBP1 (rhPEBP1) were administered intracerebroventricularly. Endogenous PEBP1 level and its phosphorylation at Ser153 were increased within penumbra tissue and cultured neurons after I/R, accompanied by decreased interaction between PEBP1 and Raf-1. There was a trend toward increased Raf-1/MEK/ERK/NF-κB signaling pathway and phosphatidylcholine-phospholipase C (PC-PLC) activity after I/R, which was enhanced by wild-type PEBP1overexpression and rhPEBP1 treatment and inhibited by PEBP1 (S153A) overexpression. And PEBP1 (S153A) overexpression increased its interaction with Raf-1, reduced infarct size, neuronal death and inflammation, and improved neurological function after I/R, while wild-type PEBP1overexpression exerted opposite effects, suggesting that phosphorylation at Ser153 may exert as a functional switch of PEBP1 by switching PEBP1 from Raf-1 inhibition to PC-PLC activation following I/R. Compared with PEBP1 knockdown, PEBP1 (S153A) overexpression exerted a better rescue effect on I/R injury, which further proved that PEBP1 may be a good protein gone bad with phosphorylation at S153 as a functional switch following I/R. Collectively, our findings suggest that PEBP1 contributed to neuronal death and inflammation after I/R. Selective inhibition of PEBP1 phosphorylation may be a novel approach to ameliorate I/R injury.

Timeline

Login to access the full chart related to this output.

If you don’t have an account, click here to discover Explorer

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 14 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 14 100%

Demographic breakdown

Readers by professional status Count As %
Student > Master 3 21%
Student > Ph. D. Student 2 14%
Student > Doctoral Student 2 14%
Unspecified 1 7%
Unknown 6 43%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 2 14%
Neuroscience 2 14%
Immunology and Microbiology 1 7%
Unspecified 1 7%
Medicine and Dentistry 1 7%
Other 1 7%
Unknown 6 43%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 09 November 2017.
All research outputs
#20,451,991
of 23,007,887 outputs
Outputs from Frontiers in Molecular Neuroscience
#2,492
of 2,909 outputs
Outputs of similar age
#286,643
of 328,934 outputs
Outputs of similar age from Frontiers in Molecular Neuroscience
#99
of 118 outputs
Altmetric has tracked 23,007,887 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 2,909 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 5.7. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 328,934 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 118 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.