↓ Skip to main content

A Novel RNA Editing Sensor Tool and a Specific Agonist Determine Neuronal Protein Expression of RNA-Edited Glycine Receptors and Identify a Genomic APOBEC1 Dimorphism as a New Genetic Risk Factor of…

Overview of attention for article published in Frontiers in Molecular Neuroscience, January 2018
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Above-average Attention Score compared to outputs of the same age and source (53rd percentile)

Mentioned by

twitter
3 X users

Readers on

mendeley
34 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
A Novel RNA Editing Sensor Tool and a Specific Agonist Determine Neuronal Protein Expression of RNA-Edited Glycine Receptors and Identify a Genomic APOBEC1 Dimorphism as a New Genetic Risk Factor of Epilepsy
Published in
Frontiers in Molecular Neuroscience, January 2018
DOI 10.3389/fnmol.2017.00439
Pubmed ID
Authors

Svenja Kankowski, Benjamin Förstera, Aline Winkelmann, Pina Knauff, Erich E. Wanker, Xintian A. You, Marcus Semtner, Florian Hetsch, Jochen C. Meier

Abstract

C-to-U RNA editing of glycine receptors (GlyR) can play an important role in disease progression of temporal lobe epilepsy (TLE) as it may contribute in a neuron type-specific way to neuropsychiatric symptoms of the disease. It is therefore necessary to develop tools that allow identification of neuron types that express RNA-edited GlyR protein. In this study, we identify NH4 as agonist of C-to-U RNA edited GlyRs. Furthermore, we generated a new molecular C-to-U RNA editing sensor tool that detects Apobec-1- dependent RNA editing in HEPG2 cells and rat primary hippocampal neurons. Using this sensor combined with NH4 application, we were able to identify C-to-U RNA editing-competent neurons and expression of C-to-U RNA-edited GlyR protein in neurons. Bioinformatic analysis of 1,000 Genome Project Phase 3 allele frequencies coding for human Apobec-1 80M and 80I variants showed differences between populations, and the results revealed a preference of the 80I variant to generate RNA-edited GlyR protein. Finally, we established a new PCR-based restriction fragment length polymorphism (RFLP) approach to profile mRNA expression with regard to the genetic APOBEC1 dimorphism of patients with intractable temporal lobe epilepsy (iTLE) and found that the patients fall into two groups. Patients with expression of the Apobec-1 80I variant mostly suffered from simple or complex partial seizures, whereas patients with 80M expression exhibited secondarily generalized seizure activity. Thus, our method allows the characterization of Apobec-1 80M and 80l variants in the brain and provides a new way to epidemiologically and semiologically classify iTLE according to the two different APOBEC1 alleles. Together, these results demonstrate Apobec-1-dependent expression of RNA-edited GlyR protein in neurons and identify the APOBEC1 80I/M-coding alleles as new genetic risk factors for iTLE patients.

Timeline

Login to access the full chart related to this output.

If you don’t have an account, click here to discover Explorer

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 34 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 34 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 8 24%
Student > Master 4 12%
Student > Bachelor 4 12%
Researcher 3 9%
Student > Postgraduate 2 6%
Other 3 9%
Unknown 10 29%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 9 26%
Agricultural and Biological Sciences 4 12%
Neuroscience 3 9%
Medicine and Dentistry 3 9%
Pharmacology, Toxicology and Pharmaceutical Science 1 3%
Other 4 12%
Unknown 10 29%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 17 January 2018.
All research outputs
#14,088,972
of 23,015,156 outputs
Outputs from Frontiers in Molecular Neuroscience
#1,439
of 2,913 outputs
Outputs of similar age
#233,541
of 443,312 outputs
Outputs of similar age from Frontiers in Molecular Neuroscience
#52
of 118 outputs
Altmetric has tracked 23,015,156 research outputs across all sources so far. This one is in the 37th percentile – i.e., 37% of other outputs scored the same or lower than it.
So far Altmetric has tracked 2,913 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 5.7. This one is in the 47th percentile – i.e., 47% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 443,312 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 45th percentile – i.e., 45% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 118 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 53% of its contemporaries.