↓ Skip to main content

The LILI Motif of M3-S2 Linkers Is a Component of the NMDA Receptor Channel Gate

Overview of attention for article published in Frontiers in Molecular Neuroscience, April 2018
Altmetric Badge

Mentioned by

twitter
3 X users

Citations

dimensions_citation
27 Dimensions

Readers on

mendeley
23 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
The LILI Motif of M3-S2 Linkers Is a Component of the NMDA Receptor Channel Gate
Published in
Frontiers in Molecular Neuroscience, April 2018
DOI 10.3389/fnmol.2018.00113
Pubmed ID
Authors

Marek Ladislav, Jiri Cerny, Jan Krusek, Martin Horak, Ales Balik, Ladislav Vyklicky

Abstract

N-methyl-D-aspartate receptors (NMDARs) mediate excitatory synaptic transmission in the central nervous system, underlie the induction of synaptic plasticity, and their malfunction is associated with human diseases. Native NMDARs are tetramers composed of two obligatory GluN1 subunits and various combinations of GluN2A-D or, more rarely, GluN3A-B subunits. Each subunit consists of an amino-terminal, ligand-binding, transmembrane and carboxyl-terminal domain. The ligand-binding and transmembrane domains are interconnected via polypeptide chains (linkers). Upon glutamate and glycine binding, these receptors undergo a series of conformational changes leading to the opening of the Ca2+-permeable ion channel. Here we report that different deletions and mutations of amino acids in the M3-S2 linkers of the GluN1 and GluN2B subunits lead to constitutively open channels. Irrespective of whether alterations were introduced in the GluN1 or the GluN2B subunit, application of glutamate or glycine promoted receptor channel activity; however, responses induced by the GluN1 agonist glycine were larger, on average, than those induced by glutamate. We observed the most prominent effect when residues GluN1(L657) and GluN2B(I655) were deleted or altered to glycine. In parallel, molecular modeling revealed that two interacting pairs of residues, the LILI motif (GluN1(L657) and GluN2B(I655)), form a functional unit with the TTTT ring (GluN1(T648) and GluN2B(T647)), described earlier to control NMDAR channel gating. These results provide new insight into the structural organization and functional interplay of the LILI and the TTTT ring during the course of NMDAR channel opening and closing.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 23 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 23 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 4 17%
Student > Ph. D. Student 4 17%
Professor > Associate Professor 3 13%
Student > Bachelor 2 9%
Student > Master 1 4%
Other 1 4%
Unknown 8 35%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 6 26%
Agricultural and Biological Sciences 3 13%
Neuroscience 3 13%
Decision Sciences 1 4%
Pharmacology, Toxicology and Pharmaceutical Science 1 4%
Other 2 9%
Unknown 7 30%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 24 April 2018.
All research outputs
#15,504,780
of 23,041,514 outputs
Outputs from Frontiers in Molecular Neuroscience
#1,871
of 2,919 outputs
Outputs of similar age
#210,164
of 329,529 outputs
Outputs of similar age from Frontiers in Molecular Neuroscience
#81
of 120 outputs
Altmetric has tracked 23,041,514 research outputs across all sources so far. This one is in the 22nd percentile – i.e., 22% of other outputs scored the same or lower than it.
So far Altmetric has tracked 2,919 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 5.7. This one is in the 28th percentile – i.e., 28% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 329,529 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 27th percentile – i.e., 27% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 120 others from the same source and published within six weeks on either side of this one. This one is in the 23rd percentile – i.e., 23% of its contemporaries scored the same or lower than it.