↓ Skip to main content

Magnesium Ions Inhibit the Expression of Tumor Necrosis Factor α and the Activity of γ-Secretase in a β-Amyloid Protein-Dependent Mechanism in APP/PS1 Transgenic Mice

Overview of attention for article published in Frontiers in Molecular Neuroscience, May 2018
Altmetric Badge

About this Attention Score

  • Above-average Attention Score compared to outputs of the same age (64th percentile)
  • Good Attention Score compared to outputs of the same age and source (72nd percentile)

Mentioned by

twitter
8 X users

Citations

dimensions_citation
30 Dimensions

Readers on

mendeley
48 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Magnesium Ions Inhibit the Expression of Tumor Necrosis Factor α and the Activity of γ-Secretase in a β-Amyloid Protein-Dependent Mechanism in APP/PS1 Transgenic Mice
Published in
Frontiers in Molecular Neuroscience, May 2018
DOI 10.3389/fnmol.2018.00172
Pubmed ID
Authors

Xin Yu, Pei-Pei Guan, Di Zhu, Yun-Yue Liang, Tao Wang, Zhan-You Wang, Pu Wang

Abstract

Alzheimer's disease (AD) is a neurodegenerative disease characterized by cognitive impairment. The neuropathological features of AD are the aggregation of extracellular amyloid β-protein (Aβ) and tau phosphorylation. Recently, AD was found to be associated with magnesium ion (Mg2+) deficit and tumor necrosis factor-alpha (TNF-α) elevation in the serum or brains of AD patients. To study the relationship between Mg2+ and TNF-α, we used human- or mouse-derived glial and neuronal cell lines or APP/PS1 transgenic (Tg) mice as in vitro and in vivo experimental models, respectively. Our data demonstrates that magnesium-L-threonate (MgT) can decrease the expression of TNF-α by restoring the levels of Mg2+ in glial cells. In addition, PI3-K/AKT and NF-κB signals play critical roles in mediating the effects of Mg2+ on suppressing the expression of TNF-α. In neurons, Mg2+ elevation showed similar suppressive effects on the expression of presenilin enhancer 2 (PEN2) and nicastrin (NCT) through a PI3-K/AKT and NF-κB-dependent mechanism. As the major components of γ-secretase, overexpression of presenilin 1 (PS1), PEN2 and NCT potentially promote the synthesis of Aβ, which in turn activates TNF-α in glial cells. Reciprocally, TNF-α stimulates the expression of PEN2 and NCT in neurons. The crosstalk between TNF-α and Aβ in glial cells and neurons could ultimately aggravate the development and progression of AD.

X Demographics

X Demographics

The data shown below were collected from the profiles of 8 X users who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 48 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 48 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 9 19%
Other 6 13%
Student > Master 6 13%
Student > Doctoral Student 3 6%
Researcher 3 6%
Other 6 13%
Unknown 15 31%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 7 15%
Pharmacology, Toxicology and Pharmaceutical Science 6 13%
Medicine and Dentistry 4 8%
Neuroscience 3 6%
Unspecified 2 4%
Other 7 15%
Unknown 19 40%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 5. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 13 January 2024.
All research outputs
#7,639,124
of 26,303,092 outputs
Outputs from Frontiers in Molecular Neuroscience
#1,070
of 3,408 outputs
Outputs of similar age
#121,371
of 347,450 outputs
Outputs of similar age from Frontiers in Molecular Neuroscience
#31
of 113 outputs
Altmetric has tracked 26,303,092 research outputs across all sources so far. This one has received more attention than most of these and is in the 70th percentile.
So far Altmetric has tracked 3,408 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.5. This one has gotten more attention than average, scoring higher than 68% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 347,450 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 64% of its contemporaries.
We're also able to compare this research output to 113 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 72% of its contemporaries.