↓ Skip to main content

Somatic Accumulation of GluA1-AMPA Receptors Leads to Selective Cognitive Impairments in Mice

Overview of attention for article published in Frontiers in Molecular Neuroscience, June 2018
Altmetric Badge

Mentioned by

twitter
3 X users

Readers on

mendeley
27 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Somatic Accumulation of GluA1-AMPA Receptors Leads to Selective Cognitive Impairments in Mice
Published in
Frontiers in Molecular Neuroscience, June 2018
DOI 10.3389/fnmol.2018.00199
Pubmed ID
Authors

David M. Bannerman, Thilo Borchardt, Vidar Jensen, Andrey Rozov, Nadia N. Haj-Yasein, Nail Burnashev, Daniel Zamanillo, Thorsten Bus, Isabel Grube, Giselind Adelmann, J. Nicholas P. Rawlins, Rolf Sprengel

Abstract

The GluA1 subunit of the L-α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) plays a crucial, but highly selective, role in cognitive function. Here we analyzed AMPAR expression, AMPAR distribution and spatial learning in mice (Gria1R/R ), expressing the "trafficking compromised" GluA1(Q600R) point mutation. Our analysis revealed somatic accumulation and reduction of GluA1(Q600R) and GluA2, but only slightly reduced CA1 synaptic localization in hippocampi of adult Gria1R/R mice. These immunohistological changes were accompanied by a strong reduction of somatic AMPAR currents in CA1, and a reduction of plasticity (short-term and long-term potentiation, STP and LTP, respectively) in the CA1 subfield following tetanic and theta-burst stimulation. Nevertheless, spatial reference memory acquisition in the Morris water-maze and on an appetitive Y-maze task was unaffected in Gria1R/R mice. In contrast, spatial working/short-term memory during both spontaneous and rewarded alternation tasks was dramatically impaired. These findings identify the GluA1(Q600R) mutation as a loss of function mutation that provides independent evidence for the selective role of GluA1 in the expression of short-term memory.

Timeline

Login to access the full chart related to this output.

If you don’t have an account, click here to discover Explorer

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 27 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 27 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 7 26%
Researcher 5 19%
Student > Master 3 11%
Student > Bachelor 2 7%
Student > Postgraduate 2 7%
Other 2 7%
Unknown 6 22%
Readers by discipline Count As %
Neuroscience 13 48%
Psychology 6 22%
Medicine and Dentistry 2 7%
Unknown 6 22%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 10 August 2021.
All research outputs
#17,981,442
of 23,092,602 outputs
Outputs from Frontiers in Molecular Neuroscience
#2,087
of 2,930 outputs
Outputs of similar age
#237,883
of 328,989 outputs
Outputs of similar age from Frontiers in Molecular Neuroscience
#78
of 118 outputs
Altmetric has tracked 23,092,602 research outputs across all sources so far. This one is in the 19th percentile – i.e., 19% of other outputs scored the same or lower than it.
So far Altmetric has tracked 2,930 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 5.7. This one is in the 21st percentile – i.e., 21% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 328,989 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 22nd percentile – i.e., 22% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 118 others from the same source and published within six weeks on either side of this one. This one is in the 21st percentile – i.e., 21% of its contemporaries scored the same or lower than it.