↓ Skip to main content

Hippocampal Memory Recovery After Acute Stress: A Behavioral, Morphological and Molecular Study

Overview of attention for article published in Frontiers in Molecular Neuroscience, August 2018
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
4 X users

Citations

dimensions_citation
21 Dimensions

Readers on

mendeley
47 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Hippocampal Memory Recovery After Acute Stress: A Behavioral, Morphological and Molecular Study
Published in
Frontiers in Molecular Neuroscience, August 2018
DOI 10.3389/fnmol.2018.00283
Pubmed ID
Authors

Felipe Ignacio Aguayo, Macarena Tejos-Bravo, Gabriela Díaz-Véliz, Aníbal Pacheco, Gonzalo García-Rojo, Wladimir Corrales, Felipe Antonio Olave, Esteban Aliaga, José L. Ulloa, Ana M. Avalos, Luciano Román-Albasini, Paulina S. Rojas, Jenny Lucy Fiedler

Abstract

Several studies have shown that a single exposure to stress may improve or impair learning and memory processes, depending on the timing in which the stress event occurs with relation to the acquisition phase. However, to date there is no information about the molecular changes that occur at the synapse during the stress-induced memory modification and after a recovery period. In particular, there are no studies that have evaluated-at the same time-the temporality of stress and stress recovery period in hippocampal short-term memory and the effects on dendritic spine morphology, along with variations in N-methyl-D-aspartate (NMDA) and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor subunits. The aim of our study was to take a multidimensional approach to investigate concomitant behavioral, morphological and molecular changes induced by a single restraint stress exposure (2.5 h) and a recovery period of 6 and 24 h in rats. We found that acute stress elicited a reduced preference to explore an object placed in a novel position (a hippocampal-dependent task). These changes were accompanied by increased activity of LIM kinase I (LIMK; an actin-remodeling protein) and increased levels of NR2A subunits of NMDA receptors. After 6 h of recovery from stress, rats showed similar preference to explore an object placed in a novel or familiar position, but density of immature spines increased in secondary CA1 apical dendrites, along with a transient rise in GluA2 AMPA receptor subunits. After 24 h of recovery from stress, the animals showed a preference to explore an object placed in a novel position, which was accompanied by a normalization of NMDA and AMPA receptor subunits to control values. Our data suggest that acute stress produces reversible molecular and behavioral changes 24 h after stress, allowing a full reestablishment of hippocampal-related memory. Further studies need to be conducted to deepen our understanding of these changes and their reciprocal interactions.Adaptive stress responses are a promising avenue to develop interventions aiming at restoring hippocampal function impaired by repetitive stress exposure.

X Demographics

X Demographics

The data shown below were collected from the profiles of 4 X users who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 47 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 47 100%

Demographic breakdown

Readers by professional status Count As %
Student > Master 13 28%
Student > Ph. D. Student 6 13%
Student > Doctoral Student 6 13%
Student > Bachelor 5 11%
Researcher 3 6%
Other 7 15%
Unknown 7 15%
Readers by discipline Count As %
Neuroscience 17 36%
Pharmacology, Toxicology and Pharmaceutical Science 5 11%
Agricultural and Biological Sciences 5 11%
Biochemistry, Genetics and Molecular Biology 3 6%
Environmental Science 2 4%
Other 5 11%
Unknown 10 21%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 04 August 2021.
All research outputs
#15,017,219
of 23,102,082 outputs
Outputs from Frontiers in Molecular Neuroscience
#1,685
of 2,931 outputs
Outputs of similar age
#199,666
of 333,264 outputs
Outputs of similar age from Frontiers in Molecular Neuroscience
#73
of 125 outputs
Altmetric has tracked 23,102,082 research outputs across all sources so far. This one is in the 32nd percentile – i.e., 32% of other outputs scored the same or lower than it.
So far Altmetric has tracked 2,931 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 5.7. This one is in the 36th percentile – i.e., 36% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 333,264 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 36th percentile – i.e., 36% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 125 others from the same source and published within six weeks on either side of this one. This one is in the 36th percentile – i.e., 36% of its contemporaries scored the same or lower than it.