↓ Skip to main content

Phosphorylation of the Amyloid-Beta Peptide Inhibits Zinc-Dependent Aggregation, Prevents Na,K-ATPase Inhibition, and Reduces Cerebral Plaque Deposition

Overview of attention for article published in Frontiers in Molecular Neuroscience, August 2018
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (81st percentile)
  • High Attention Score compared to outputs of the same age and source (82nd percentile)

Mentioned by

news
1 news outlet
twitter
2 X users

Citations

dimensions_citation
32 Dimensions

Readers on

mendeley
30 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Phosphorylation of the Amyloid-Beta Peptide Inhibits Zinc-Dependent Aggregation, Prevents Na,K-ATPase Inhibition, and Reduces Cerebral Plaque Deposition
Published in
Frontiers in Molecular Neuroscience, August 2018
DOI 10.3389/fnmol.2018.00302
Pubmed ID
Authors

Evgeny P. Barykin, Irina Y. Petrushanko, Sergey A. Kozin, Georgy B. Telegin, Alexander S. Chernov, Olga D. Lopina, Sergey P. Radko, Vladimir A. Mitkevich, Alexander A. Makarov

Abstract

The triggers of late-onset sporadic Alzheimer's disease (AD) are still poorly understood. Impairment of protein phosphorylation with age is well-known; however, the role of the phosphorylation in β-amyloid peptide (Aβ) is not studied sufficiently. Zinc-induced oligomerization of Aβ represents a potential seeding mechanism for the formation of neurotoxic Aβ oligomers and aggregates. Phosphorylation of Aβ by Ser8 (pS8-Aβ), localized inside the zinc-binding domain of the peptide, may significantly alter its zinc-induced oligomerization. Indeed, using dynamic light scattering, we have shown that phosphorylation by Ser8 dramatically reduces zinc-induced aggregation of Aβ, and moreover pS8-Aβ suppresses zinc-driven aggregation of non-modified Aβ in an equimolar mixture. We have further analyzed the effect of pS8-Aβ on the progression of cerebral amyloidosis with serial retro-orbital injections of the peptide in APPSwe/PSEN1dE9 murine model of AD, followed by histological analysis of amyloid burden in hippocampus. Unlike the non-modified Aβ that has no influence on the amyloidosis progression in murine models of AD, pS8-Aβ injections reduced the number of amyloid plaques in the hippocampus of mice by one-third. Recently shown inhibition of Na+,K+-ATPase activity by Aβ, which is thought to be a major contributor to neuronal dysfunction in AD, is completely reversed by phosphorylation of the peptide. Thus, several AD-associated pathogenic properties of Aβ are neutralized by its phosphorylation.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 30 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 30 100%

Demographic breakdown

Readers by professional status Count As %
Student > Bachelor 5 17%
Researcher 5 17%
Student > Doctoral Student 3 10%
Student > Master 3 10%
Student > Ph. D. Student 2 7%
Other 3 10%
Unknown 9 30%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 7 23%
Neuroscience 3 10%
Agricultural and Biological Sciences 2 7%
Nursing and Health Professions 1 3%
Pharmacology, Toxicology and Pharmaceutical Science 1 3%
Other 5 17%
Unknown 11 37%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 11. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 21 September 2018.
All research outputs
#2,970,288
of 23,103,436 outputs
Outputs from Frontiers in Molecular Neuroscience
#424
of 2,931 outputs
Outputs of similar age
#62,288
of 335,220 outputs
Outputs of similar age from Frontiers in Molecular Neuroscience
#24
of 139 outputs
Altmetric has tracked 23,103,436 research outputs across all sources so far. Compared to these this one has done well and is in the 87th percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 2,931 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 5.7. This one has done well, scoring higher than 85% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 335,220 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 81% of its contemporaries.
We're also able to compare this research output to 139 others from the same source and published within six weeks on either side of this one. This one has done well, scoring higher than 82% of its contemporaries.