↓ Skip to main content

Candidate Chinese Herbal Medicine Alleviates Methamphetamine Addiction via Regulating Dopaminergic and Serotonergic Pathways

Overview of attention for article published in Frontiers in Molecular Neuroscience, March 2022
Altmetric Badge

Mentioned by

twitter
2 X users

Readers on

mendeley
7 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Candidate Chinese Herbal Medicine Alleviates Methamphetamine Addiction via Regulating Dopaminergic and Serotonergic Pathways
Published in
Frontiers in Molecular Neuroscience, March 2022
DOI 10.3389/fnmol.2022.874080
Pubmed ID
Authors

Qin Ru, Qi Xiong, Xiang Tian, Congyue Xu, Can Li, Lin Chen, Yuxiang Wu

Abstract

Methamphetamine (METH) addiction and its induced mental disorders have become a severe worldwide problem. A candidate Chinese herbal medicine (CCHM) in our lab had therapeutic effects on METH-induced locomotor sensitization, however, its chemical and pharmacological profiles remain to be elucidated. The current study aimed to investigate the effect of CCHM on conditioned place preference (CPP) induced by METH and screen the main active ingredients and key targets by using network pharmacology and molecular docking methods. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment, Gene ontology (GO) analysis and protein-protein interaction (PPI) network were performed to discover the potential mechanisms. Results showed that CCHM could significantly inhibit METH-induced CPP behaviors in mice. A total of 123 components and 43 targets were screened. According to the network pharmacology analysis, ten hub targets including D(2) dopamine receptor (DRD2) and 5-hydroxytryptamine receptor 3A (HTR3A) were screened. GO analysis and KEGG enrichment indicated that mechanisms of CCHM treatment of METH addiction were related to multiple pathways such as dopaminergic synapse and serotoninergic synapse. Western blot results showed that the protein expressions of DRD2 in nucleus accumbens and prefrontal cortex were significantly decreased in METH group, while the protein expressions of HTR3A were significantly increased. These changes caused by METH could be prevented by CCHM pretreatment. The results of molecular docking displayed that the five active ingredients such as (S)-Scoulerine, Hyndarin, and Beta-Sitosterol had good affinities with DRD2 and HTR3A. In conclusion, this study constructed the CCHM's pharmacologic network for treating METH addiction based on the method of network analysis and experimental verification, and analyzed its major active ingredients and potential targets, indicating a new direction for further revealing its mechanisms of effect on METH addiction.

Timeline

Login to access the full chart related to this output.

If you don’t have an account, click here to discover Explorer

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 7 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 7 100%

Demographic breakdown

Readers by professional status Count As %
Student > Bachelor 1 14%
Researcher 1 14%
Other 1 14%
Unknown 4 57%
Readers by discipline Count As %
Nursing and Health Professions 1 14%
Psychology 1 14%
Medicine and Dentistry 1 14%
Unknown 4 57%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 17 April 2022.
All research outputs
#19,011,832
of 23,567,572 outputs
Outputs from Frontiers in Molecular Neuroscience
#2,366
of 3,025 outputs
Outputs of similar age
#317,438
of 443,761 outputs
Outputs of similar age from Frontiers in Molecular Neuroscience
#115
of 138 outputs
Altmetric has tracked 23,567,572 research outputs across all sources so far. This one is in the 11th percentile – i.e., 11% of other outputs scored the same or lower than it.
So far Altmetric has tracked 3,025 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 5.7. This one is in the 14th percentile – i.e., 14% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 443,761 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 18th percentile – i.e., 18% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 138 others from the same source and published within six weeks on either side of this one. This one is in the 13th percentile – i.e., 13% of its contemporaries scored the same or lower than it.