↓ Skip to main content

Molecular Machines Determining the Fate of Endocytosed Synaptic Vesicles in Nerve Terminals

Overview of attention for article published in Frontiers in Synaptic Neuroscience, May 2016
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age

Mentioned by

twitter
3 X users

Citations

dimensions_citation
9 Dimensions

Readers on

mendeley
45 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Molecular Machines Determining the Fate of Endocytosed Synaptic Vesicles in Nerve Terminals
Published in
Frontiers in Synaptic Neuroscience, May 2016
DOI 10.3389/fnsyn.2016.00010
Pubmed ID
Authors

Fassio, Anna, Fadda, Manuela, Benfenati, Fabio

Abstract

The cycle of a synaptic vesicle (SV) within the nerve terminal is a step-by-step journey with the final goal of ensuring the proper synaptic strength under changing environmental conditions. The SV cycle is a precisely regulated membrane traffic event in cells and, because of this, a plethora of membrane-bound and cytosolic proteins are devoted to assist SVs in each step of the journey. The cycling fate of endocytosed SVs determines both the availability for subsequent rounds of release and the lifetime of SVs in the terminal and is therefore crucial for synaptic function and plasticity. Molecular players that determine the destiny of SVs in nerve terminals after a round of exo-endocytosis are largely unknown. Here we review the functional role in SV fate of phosphorylation/dephosphorylation of SV proteins and of small GTPases acting on membrane trafficking at the synapse, as they are emerging as key molecules in determining the recycling route of SVs within the nerve terminal. In particular, we focus on: (i) the cyclin-dependent kinase-5 (cdk5) and calcineurin (CN) control of the recycling pool of SVs; (ii) the role of small GTPases of the Rab and ADP-ribosylation factor (Arf) families in defining the route followed by SV in their nerve terminal cycle. These regulatory proteins together with their synaptic regulators and effectors, are molecular nanomachines mediating homeostatic responses in synaptic plasticity and potential targets of drugs modulating the efficiency of synaptic transmission.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 45 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United States 1 2%
Unknown 44 98%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 14 31%
Researcher 8 18%
Student > Bachelor 5 11%
Student > Master 3 7%
Professor 2 4%
Other 7 16%
Unknown 6 13%
Readers by discipline Count As %
Neuroscience 12 27%
Agricultural and Biological Sciences 10 22%
Biochemistry, Genetics and Molecular Biology 8 18%
Medicine and Dentistry 5 11%
Engineering 2 4%
Other 2 4%
Unknown 6 13%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 01 June 2016.
All research outputs
#15,372,369
of 22,869,263 outputs
Outputs from Frontiers in Synaptic Neuroscience
#288
of 413 outputs
Outputs of similar age
#189,660
of 311,729 outputs
Outputs of similar age from Frontiers in Synaptic Neuroscience
#6
of 8 outputs
Altmetric has tracked 22,869,263 research outputs across all sources so far. This one is in the 22nd percentile – i.e., 22% of other outputs scored the same or lower than it.
So far Altmetric has tracked 413 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 5.0. This one is in the 26th percentile – i.e., 26% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 311,729 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 30th percentile – i.e., 30% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 8 others from the same source and published within six weeks on either side of this one. This one has scored higher than 2 of them.