↓ Skip to main content

Structural changes of the corpus callosum in tinnitus

Overview of attention for article published in Frontiers in Systems Neuroscience, January 2012
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
2 X users
facebook
1 Facebook page

Citations

dimensions_citation
19 Dimensions

Readers on

mendeley
59 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Structural changes of the corpus callosum in tinnitus
Published in
Frontiers in Systems Neuroscience, January 2012
DOI 10.3389/fnsys.2012.00017
Pubmed ID
Authors

Eugen Diesch, Verena Schummer, Martin Kramer, Andre Rupp

Abstract

Objectives: In tinnitus, several brain regions seem to be structurally altered, including the medial partition of Heschl's gyrus (mHG), the site of the primary auditory cortex. The mHG is smaller in tinnitus patients than in healthy controls. The corpus callosum (CC) is the main interhemispheric commissure of the brain connecting the auditory areas of the left and the right hemisphere. Here, we investigate whether tinnitus status is associated with CC volume. Methods: The midsagittal cross-sectional area of the CC was examined in tinnitus patients and healthy controls in which an examination of the mHG had been carried out earlier. The CC was extracted and segmented into subregions which were defined according to the most common CC morphometry schemes introduced by Witelson (1989) and Hofer and Frahm (2006). Results: For both CC segmentation schemes, the CC posterior midbody was smaller in male patients than in male healthy controls and the isthmus, the anterior midbody, and the genou were larger in female patients than in female controls. With CC size normalized relative to mHG volume, the normalized CC splenium was larger in male patients than male controls and the normalized CC splenium, the isthmus and the genou were larger in female patients than female controls. Normalized CC segment size expresses callosal interconnectivity relative to auditory cortex volume. Conclusion: It may be argued that the predominant function of the CC is excitatory. The stronger callosal interconnectivity in tinnitus patients, compared to healthy controls, may facilitate the emergence and maintenance of a positive feedback loop between tinnitus generators located in the two hemispheres.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 59 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United Kingdom 3 5%
Netherlands 1 2%
United States 1 2%
Canada 1 2%
Unknown 53 90%

Demographic breakdown

Readers by professional status Count As %
Researcher 14 24%
Student > Ph. D. Student 9 15%
Student > Master 8 14%
Student > Doctoral Student 6 10%
Student > Bachelor 5 8%
Other 15 25%
Unknown 2 3%
Readers by discipline Count As %
Neuroscience 19 32%
Medicine and Dentistry 18 31%
Psychology 4 7%
Nursing and Health Professions 3 5%
Agricultural and Biological Sciences 3 5%
Other 6 10%
Unknown 6 10%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 14 March 2013.
All research outputs
#14,102,711
of 22,701,287 outputs
Outputs from Frontiers in Systems Neuroscience
#829
of 1,339 outputs
Outputs of similar age
#153,134
of 244,143 outputs
Outputs of similar age from Frontiers in Systems Neuroscience
#26
of 51 outputs
Altmetric has tracked 22,701,287 research outputs across all sources so far. This one is in the 37th percentile – i.e., 37% of other outputs scored the same or lower than it.
So far Altmetric has tracked 1,339 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 10.6. This one is in the 37th percentile – i.e., 37% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 244,143 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 37th percentile – i.e., 37% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 51 others from the same source and published within six weeks on either side of this one. This one is in the 49th percentile – i.e., 49% of its contemporaries scored the same or lower than it.