↓ Skip to main content

The reactivation of somatosensory cortex and behavioral recovery after sensory loss in mature primates

Overview of attention for article published in Frontiers in Systems Neuroscience, May 2014
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age

Mentioned by

twitter
2 X users

Citations

dimensions_citation
34 Dimensions

Readers on

mendeley
45 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
The reactivation of somatosensory cortex and behavioral recovery after sensory loss in mature primates
Published in
Frontiers in Systems Neuroscience, May 2014
DOI 10.3389/fnsys.2014.00084
Pubmed ID
Authors

Hui-Xin Qi, Jon H. Kaas, Jamie L. Reed

Abstract

In our experiments, we removed a major source of activation of somatosensory cortex in mature monkeys by unilaterally sectioning the sensory afferents in the dorsal columns of the spinal cord at a high cervical level. At this level, the ascending branches of tactile afferents from the hand are cut, while other branches of these afferents remain intact to terminate on neurons in the dorsal horn of the spinal cord. Immediately after such a lesion, the monkeys seem relatively unimpaired in locomotion and often use the forelimb, but further inspection reveals that they prefer to use the unaffected hand in reaching for food. In addition, systematic testing indicates that they make more errors in retrieving pieces of food, and start using visual inspection of the rotated hand to confirm the success of the grasping of the food. Such difficulties are not surprising as a complete dorsal column lesion totally deactivates the contralateral hand representation in primary somatosensory cortex (area 3b). However, hand use rapidly improves over the first post-lesion weeks, and much of the hand representational territory in contralateral area 3b is reactivated by inputs from the hand in roughly a normal somatotopic pattern. Quantitative measures of single neuron response properties reveal that reactivated neurons respond to tactile stimulation on the hand with high firing rates and only slightly longer latencies. We conclude that preserved dorsal column afferents after nearly complete lesions contribute to the reactivation of cortex and the recovery of the behavior, but second-order sensory pathways in the spinal cord may also play an important role. Our microelectrode recordings indicate that these preserved first-order, and second-order pathways are initially weak and largely ineffective in activating cortex, but they are potentiated during the recovery process. Therapies that would promote this potentiation could usefully enhance recovery after spinal cord injury.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 45 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United Kingdom 1 2%
Unknown 44 98%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 10 22%
Researcher 9 20%
Student > Master 7 16%
Student > Bachelor 5 11%
Other 3 7%
Other 7 16%
Unknown 4 9%
Readers by discipline Count As %
Neuroscience 12 27%
Agricultural and Biological Sciences 11 24%
Medicine and Dentistry 5 11%
Psychology 3 7%
Engineering 3 7%
Other 4 9%
Unknown 7 16%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 22 April 2014.
All research outputs
#16,388,648
of 24,143,470 outputs
Outputs from Frontiers in Systems Neuroscience
#994
of 1,390 outputs
Outputs of similar age
#137,705
of 231,380 outputs
Outputs of similar age from Frontiers in Systems Neuroscience
#43
of 63 outputs
Altmetric has tracked 24,143,470 research outputs across all sources so far. This one is in the 21st percentile – i.e., 21% of other outputs scored the same or lower than it.
So far Altmetric has tracked 1,390 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 11.1. This one is in the 21st percentile – i.e., 21% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 231,380 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 30th percentile – i.e., 30% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 63 others from the same source and published within six weeks on either side of this one. This one is in the 22nd percentile – i.e., 22% of its contemporaries scored the same or lower than it.