↓ Skip to main content

Feature-Based Change Detection Reveals Inconsistent Individual Differences in Visual Working Memory Capacity

Overview of attention for article published in Frontiers in Systems Neuroscience, April 2016
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
3 X users

Citations

dimensions_citation
13 Dimensions

Readers on

mendeley
46 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Feature-Based Change Detection Reveals Inconsistent Individual Differences in Visual Working Memory Capacity
Published in
Frontiers in Systems Neuroscience, April 2016
DOI 10.3389/fnsys.2016.00033
Pubmed ID
Authors

Joseph P. Ambrose, Sobanawartiny Wijeakumar, Aaron T. Buss, John P. Spencer

Abstract

Visual working memory (VWM) is a key cognitive system that enables people to hold visual information in mind after a stimulus has been removed and compare past and present to detect changes that have occurred. VWM is severely capacity limited to around 3-4 items, although there are robust individual differences in this limit. Importantly, these individual differences are evident in neural measures of VWM capacity. Here, we capitalized on recent work showing that capacity is lower for more complex stimulus dimension. In particular, we asked whether individual differences in capacity remain consistent if capacity is shifted by a more demanding task, and, further, whether the correspondence between behavioral and neural measures holds across a shift in VWM capacity. Participants completed a change detection (CD) task with simple colors and complex shapes in an fMRI experiment. As expected, capacity was significantly lower for the shape dimension. Moreover, there were robust individual differences in behavioral estimates of VWM capacity across dimensions. Similarly, participants with a stronger BOLD response for color also showed a strong neural response for shape within the lateral occipital cortex, intraparietal sulcus (IPS), and superior IPS. Although there were robust individual differences in the behavioral and neural measures, we found little evidence of systematic brain-behavior correlations across feature dimensions. This suggests that behavioral and neural measures of capacity provide different views onto the processes that underlie VWM and CD. Recent theoretical approaches that attempt to bridge between behavioral and neural measures are well positioned to address these findings in future work.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 46 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United Kingdom 1 2%
Unknown 45 98%

Demographic breakdown

Readers by professional status Count As %
Researcher 10 22%
Student > Ph. D. Student 7 15%
Student > Bachelor 5 11%
Student > Master 4 9%
Other 3 7%
Other 9 20%
Unknown 8 17%
Readers by discipline Count As %
Psychology 20 43%
Neuroscience 8 17%
Medicine and Dentistry 2 4%
Agricultural and Biological Sciences 1 2%
Computer Science 1 2%
Other 6 13%
Unknown 8 17%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 02 May 2016.
All research outputs
#13,975,135
of 22,862,742 outputs
Outputs from Frontiers in Systems Neuroscience
#797
of 1,344 outputs
Outputs of similar age
#154,536
of 299,187 outputs
Outputs of similar age from Frontiers in Systems Neuroscience
#19
of 30 outputs
Altmetric has tracked 22,862,742 research outputs across all sources so far. This one is in the 37th percentile – i.e., 37% of other outputs scored the same or lower than it.
So far Altmetric has tracked 1,344 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 10.8. This one is in the 38th percentile – i.e., 38% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 299,187 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 46th percentile – i.e., 46% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 30 others from the same source and published within six weeks on either side of this one. This one is in the 33rd percentile – i.e., 33% of its contemporaries scored the same or lower than it.