↓ Skip to main content

Disruption of Network Synchrony and Cognitive Dysfunction After Traumatic Brain Injury

Overview of attention for article published in Frontiers in Systems Neuroscience, May 2016
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • Good Attention Score compared to outputs of the same age (73rd percentile)
  • Good Attention Score compared to outputs of the same age and source (71st percentile)

Mentioned by

twitter
9 X users
facebook
2 Facebook pages

Citations

dimensions_citation
67 Dimensions

Readers on

mendeley
131 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Disruption of Network Synchrony and Cognitive Dysfunction After Traumatic Brain Injury
Published in
Frontiers in Systems Neuroscience, May 2016
DOI 10.3389/fnsys.2016.00043
Pubmed ID
Authors

John A. Wolf, Paul F. Koch

Abstract

Traumatic brain injury (TBI) is a heterogeneous disorder with many factors contributing to a spectrum of severity, leading to cognitive dysfunction that may last for many years after injury. Injury to axons in the white matter, which are preferentially vulnerable to biomechanical forces, is prevalent in many TBIs. Unlike focal injury to a discrete brain region, axonal injury is fundamentally an injury to the substrate by which networks of the brain communicate with one another. The brain is envisioned as a series of dynamic, interconnected networks that communicate via long axonal conduits termed the "connectome". Ensembles of neurons communicate via these pathways and encode information within and between brain regions in ways that are timing dependent. Our central hypothesis is that traumatic injury to axons may disrupt the exquisite timing of neuronal communication within and between brain networks, and that this may underlie aspects of post-TBI cognitive dysfunction. With a better understanding of how highly interconnected networks of neurons communicate with one another in important cognitive regions such as the limbic system, and how disruption of this communication occurs during injury, we can identify new therapeutic targets to restore lost function. This requires the tools of systems neuroscience, including electrophysiological analysis of ensemble neuronal activity and circuitry changes in awake animals after TBI, as well as computational modeling of the effects of TBI on these networks. As more is revealed about how inter-regional neuronal interactions are disrupted, treatments directly targeting these dysfunctional pathways using neuromodulation can be developed.

X Demographics

X Demographics

The data shown below were collected from the profiles of 9 X users who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 131 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United States 3 2%
Unknown 128 98%

Demographic breakdown

Readers by professional status Count As %
Researcher 22 17%
Student > Ph. D. Student 21 16%
Student > Bachelor 17 13%
Student > Doctoral Student 13 10%
Other 10 8%
Other 24 18%
Unknown 24 18%
Readers by discipline Count As %
Neuroscience 32 24%
Medicine and Dentistry 18 14%
Psychology 17 13%
Agricultural and Biological Sciences 8 6%
Nursing and Health Professions 7 5%
Other 19 15%
Unknown 30 23%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 6. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 17 May 2017.
All research outputs
#5,672,380
of 23,577,761 outputs
Outputs from Frontiers in Systems Neuroscience
#445
of 1,364 outputs
Outputs of similar age
#85,866
of 328,769 outputs
Outputs of similar age from Frontiers in Systems Neuroscience
#8
of 28 outputs
Altmetric has tracked 23,577,761 research outputs across all sources so far. Compared to these this one has done well and is in the 75th percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 1,364 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 10.9. This one has gotten more attention than average, scoring higher than 67% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 328,769 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 73% of its contemporaries.
We're also able to compare this research output to 28 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 71% of its contemporaries.