↓ Skip to main content

Increased Brain Activation for Dual Tasking with 70-Days Head-Down Bed Rest

Overview of attention for article published in Frontiers in Systems Neuroscience, August 2016
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
4 X users

Citations

dimensions_citation
46 Dimensions

Readers on

mendeley
60 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Increased Brain Activation for Dual Tasking with 70-Days Head-Down Bed Rest
Published in
Frontiers in Systems Neuroscience, August 2016
DOI 10.3389/fnsys.2016.00071
Pubmed ID
Authors

Peng Yuan, Vincent Koppelmans, Patricia A. Reuter-Lorenz, Yiri E. De Dios, Nichole E. Gadd, Scott J. Wood, Roy Riascos, Igor S. Kofman, Jacob J. Bloomberg, Ajitkumar P. Mulavara, Rachael D. Seidler

Abstract

Head-down tilt bed rest (HDBR) has been used as a spaceflight analog to simulate the effects of microgravity exposure on human physiology, sensorimotor function, and cognition on Earth. Previous studies have reported that concurrent performance of motor and cognitive tasks can be impaired during space missions. Understanding the consequences of HDBR for neural control of dual tasking may possibly provide insight into neural efficiency during spaceflight. In the current study, we evaluated how dual task performance and the underlying brain activation changed as a function of HDBR. Eighteen healthy men participated in this study. They remained continuously in the 6° head-down tilt position for 70 days. Functional MRI for bimanual finger tapping was acquired during both single task and dual task conditions, and repeated at 7 time points pre-, during- and post-HDBR. Another 12 healthy males participated as controls who did not undergo HDBR. A widely distributed network involving the frontal, parietal, cingulate, temporal, and occipital cortices exhibited increased activation for dual tasking and increased activation differences between dual and single task conditions during HDBR relative to pre- or post-HDBR. This HDBR-related brain activation increase for dual tasking implies that more neurocognitive control is needed for dual task execution during HDBR compared to pre- and post-HDBR. We observed a positive correlation between pre-to-post HDBR changes in dual-task cost of reaction time and pre-to-post HDBR change in dual-task cost of brain activation in several cerebral and cerebellar regions. These findings could be predictive of changes in dual task processing during spaceflight.

X Demographics

X Demographics

The data shown below were collected from the profiles of 4 X users who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 60 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 60 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 13 22%
Student > Bachelor 7 12%
Researcher 4 7%
Other 3 5%
Student > Master 3 5%
Other 10 17%
Unknown 20 33%
Readers by discipline Count As %
Neuroscience 15 25%
Psychology 6 10%
Medicine and Dentistry 5 8%
Agricultural and Biological Sciences 2 3%
Engineering 2 3%
Other 5 8%
Unknown 25 42%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 08 September 2016.
All research outputs
#13,986,187
of 22,881,964 outputs
Outputs from Frontiers in Systems Neuroscience
#795
of 1,344 outputs
Outputs of similar age
#191,910
of 342,858 outputs
Outputs of similar age from Frontiers in Systems Neuroscience
#11
of 21 outputs
Altmetric has tracked 22,881,964 research outputs across all sources so far. This one is in the 37th percentile – i.e., 37% of other outputs scored the same or lower than it.
So far Altmetric has tracked 1,344 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 10.7. This one is in the 38th percentile – i.e., 38% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 342,858 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 42nd percentile – i.e., 42% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 21 others from the same source and published within six weeks on either side of this one. This one is in the 38th percentile – i.e., 38% of its contemporaries scored the same or lower than it.