↓ Skip to main content

From Cortical Blindness to Conscious Visual Perception: Theories on Neuronal Networks and Visual Training Strategies

Overview of attention for article published in Frontiers in Systems Neuroscience, August 2017
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • Good Attention Score compared to outputs of the same age (74th percentile)
  • Good Attention Score compared to outputs of the same age and source (75th percentile)

Mentioned by

twitter
13 X users

Citations

dimensions_citation
18 Dimensions

Readers on

mendeley
69 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
From Cortical Blindness to Conscious Visual Perception: Theories on Neuronal Networks and Visual Training Strategies
Published in
Frontiers in Systems Neuroscience, August 2017
DOI 10.3389/fnsys.2017.00064
Pubmed ID
Authors

Vanessa Hadid, Franco Lepore

Abstract

Homonymous hemianopia (HH) is the most common cortical visual impairment leading to blindness in the contralateral hemifield. It is associated with many inconveniences and daily restrictions such as exploration and visual orientation difficulties. However, patients with HH can preserve the remarkable ability to unconsciously perceive visual stimuli presented in their blindfield, a phenomenon known as blindsight. Unfortunately, the nature of this captivating residual ability is still misunderstood and the rehabilitation strategies in terms of visual training have been insufficiently exploited. This article discusses type I and type II blindsight in a neuronal framework of altered global workspace, resulting from inefficient perception, attention and conscious networks. To enhance synchronization and create global availability for residual abilities to reach visual consciousness, rehabilitation tools need to stimulate subcortical extrastriate pathways through V5/MT. Multisensory bottom-up compensation combined with top-down restitution training could target pre-existing and new neuronal mechanisms to recreate a framework for potential functionality.

X Demographics

X Demographics

The data shown below were collected from the profiles of 13 X users who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 69 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 69 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 13 19%
Researcher 8 12%
Student > Bachelor 8 12%
Other 7 10%
Student > Master 7 10%
Other 10 14%
Unknown 16 23%
Readers by discipline Count As %
Neuroscience 11 16%
Medicine and Dentistry 9 13%
Psychology 9 13%
Agricultural and Biological Sciences 2 3%
Biochemistry, Genetics and Molecular Biology 2 3%
Other 10 14%
Unknown 26 38%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 7. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 09 June 2020.
All research outputs
#5,392,689
of 26,231,860 outputs
Outputs from Frontiers in Systems Neuroscience
#425
of 1,407 outputs
Outputs of similar age
#82,492
of 328,714 outputs
Outputs of similar age from Frontiers in Systems Neuroscience
#6
of 24 outputs
Altmetric has tracked 26,231,860 research outputs across all sources so far. Compared to these this one has done well and is in the 79th percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 1,407 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 11.0. This one has gotten more attention than average, scoring higher than 69% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 328,714 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 74% of its contemporaries.
We're also able to compare this research output to 24 others from the same source and published within six weeks on either side of this one. This one has done well, scoring higher than 75% of its contemporaries.