↓ Skip to main content

Hippocampal Mechanisms Underlying Impairment in Spatial Learning Long After Establishment of Noise-Induced Hearing Loss in CBA Mice

Overview of attention for article published in Frontiers in Systems Neuroscience, July 2018
Altmetric Badge

Mentioned by

twitter
2 X users

Citations

dimensions_citation
40 Dimensions

Readers on

mendeley
47 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Hippocampal Mechanisms Underlying Impairment in Spatial Learning Long After Establishment of Noise-Induced Hearing Loss in CBA Mice
Published in
Frontiers in Systems Neuroscience, July 2018
DOI 10.3389/fnsys.2018.00035
Pubmed ID
Authors

Lijie Liu, Chuanying Xuan, Pei Shen, Tingting He, Ying Chang, Lijuan Shi, Shan Tao, Zhiping Yu, Richard E. Brown, Jian Wang

Abstract

Sensorineural hearing loss (SNHL) has been demonstrated in many clinical reports as a risk factor that promotes the development of cognitive impairment. However, the underlying neurological mechanisms are not clear. Noise exposure is one of the most common causes of SNHL. Although noise exposure causes relatively less damage to general health as compared with other methods for creating hearing loss (such as ototoxicity), it does impair cognitive function. Many studies have shown that the noise-induced cognitive impairment occur via the oxidative stress induced by the noise. In those studies, the effects of the noise-induced hearing loss induced (NIHL) were not addressed. Previously, we have demonstrated in the CBA/CaJ mouse model that oxidative stress was transient after a brief noise exposure, but the NIHL was permanent. In addition, NIHL was followed by a declined cognitive function and decreased hippocampal neurogenesis that were developed long after the oxidative stress disappeared. Therefore, NIHL can cause cognitive impairment independent of its stress effect and can serve as a model to investigate the relationship between hearing loss and the development of cognitive impairment. In the present study, we further demonstrated that the oxidative stress produced by the brief noise exposure did not damage the stem cell bank of hippocampus that was evaluated shortly after the noise exposure. In addition to the reduction in the rate of cell proliferation in hippocampus that was found previously, we found that the NIHL significantly reduced the promoting effect of learning activity on various stages of hippocampal neurogenesis, accompanied by the reduction in learning-induced expression of immediate early genes (IEGs) in hippocampus. Since the MWM-tested spatial function does not directly require auditory input, the results provide evidence for the maintenance role of auditory input on the cognitive function; the reduction of IEG expression that is required in memory-formation may be the initial step in blocking the effect of learning activity on neurogenesis in subjects with NIHL.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 47 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 47 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 7 15%
Student > Master 7 15%
Other 5 11%
Student > Ph. D. Student 5 11%
Student > Bachelor 3 6%
Other 7 15%
Unknown 13 28%
Readers by discipline Count As %
Neuroscience 12 26%
Medicine and Dentistry 8 17%
Agricultural and Biological Sciences 4 9%
Psychology 3 6%
Biochemistry, Genetics and Molecular Biology 1 2%
Other 3 6%
Unknown 16 34%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 02 August 2018.
All research outputs
#17,982,872
of 23,094,276 outputs
Outputs from Frontiers in Systems Neuroscience
#1,058
of 1,346 outputs
Outputs of similar age
#237,303
of 329,800 outputs
Outputs of similar age from Frontiers in Systems Neuroscience
#13
of 15 outputs
Altmetric has tracked 23,094,276 research outputs across all sources so far. This one is in the 19th percentile – i.e., 19% of other outputs scored the same or lower than it.
So far Altmetric has tracked 1,346 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 10.8. This one is in the 15th percentile – i.e., 15% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 329,800 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 23rd percentile – i.e., 23% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 15 others from the same source and published within six weeks on either side of this one. This one is in the 6th percentile – i.e., 6% of its contemporaries scored the same or lower than it.