↓ Skip to main content

Positive Connectivity Predicts the Dynamic Intrinsic Topology of the Human Brain Network

Overview of attention for article published in Frontiers in Systems Neuroscience, August 2018
Altmetric Badge

About this Attention Score

  • Above-average Attention Score compared to outputs of the same age (51st percentile)
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
4 X users

Citations

dimensions_citation
26 Dimensions

Readers on

mendeley
35 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Positive Connectivity Predicts the Dynamic Intrinsic Topology of the Human Brain Network
Published in
Frontiers in Systems Neuroscience, August 2018
DOI 10.3389/fnsys.2018.00038
Pubmed ID
Authors

Jingyu Qian, Ibai Diez, Laura Ortiz-Terán, Christian Bonadio, Thomas Liddell, Joaquin Goñi, Jorge Sepulcre

Abstract

Functional connectivity MRI (fcMRI) has become instrumental in facilitating research of human brain network organization in terms of coincident interactions between positive and negative synchronizations of large-scale neuronal systems. Although there is a common agreement concerning the interpretation of positive couplings between brain areas, a major debate has been made in disentangling the nature of negative connectivity patterns in terms of its emergence in several methodological approaches and its significance/meaning in specific neuropsychiatric diseases. It is still not clear what information the functional negative correlations or connectivity provides or how they relate to the positive connectivity. Through implementing stepwise functional connectivity (SFC) analysis and studying the causality of functional topological patterns, this study aims to shed light on the relationship between positive and negative connectivity in the human brain functional connectome. We found that the strength of negative correlations between voxel-pairs relates to their positive connectivity path-length. More importantly, our study describes how the spatio-temporal patterns of positive connectivity explain the evolving changes of negative connectivity over time, but not the other way around. This finding suggests that positive and negative connectivity do not display equivalent forces but shows that the positive connectivity has a dominant role in the overall human brain functional connectome. This phenomenon provides novel insights about the nature of positive and negative correlations in fcMRI and will potentially help new developments for neuroimaging biomarkers.

X Demographics

X Demographics

The data shown below were collected from the profiles of 4 X users who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 35 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 35 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 7 20%
Student > Ph. D. Student 5 14%
Student > Master 4 11%
Student > Doctoral Student 2 6%
Student > Bachelor 2 6%
Other 4 11%
Unknown 11 31%
Readers by discipline Count As %
Neuroscience 8 23%
Psychology 3 9%
Agricultural and Biological Sciences 2 6%
Engineering 2 6%
Medicine and Dentistry 2 6%
Other 4 11%
Unknown 14 40%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 3. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 28 November 2019.
All research outputs
#13,259,783
of 23,102,082 outputs
Outputs from Frontiers in Systems Neuroscience
#705
of 1,346 outputs
Outputs of similar age
#162,896
of 334,790 outputs
Outputs of similar age from Frontiers in Systems Neuroscience
#8
of 16 outputs
Altmetric has tracked 23,102,082 research outputs across all sources so far. This one is in the 42nd percentile – i.e., 42% of other outputs scored the same or lower than it.
So far Altmetric has tracked 1,346 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 10.8. This one is in the 47th percentile – i.e., 47% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 334,790 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 51% of its contemporaries.
We're also able to compare this research output to 16 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 50% of its contemporaries.