↓ Skip to main content

Acetylation Increases EWS-FLI1 DNA Binding and Transcriptional Activity

Overview of attention for article published in Frontiers in oncology, January 2012
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
21 Dimensions

Readers on

mendeley
30 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Acetylation Increases EWS-FLI1 DNA Binding and Transcriptional Activity
Published in
Frontiers in oncology, January 2012
DOI 10.3389/fonc.2012.00107
Pubmed ID
Authors

Silke Schlottmann, Hayriye V. Erkizan, Julie S. Barber-Rotenberg, Chad Knights, Amrita Cheema, Aykut Üren, Maria L. Avantaggiati, Jeffrey A. Toretsky

Abstract

Ewing Sarcoma (ES) is associated with a balanced chromosomal translocation that in most cases leads to the expression of the oncogenic fusion protein and transcription factor EWS-FLI1. EWS-FLI1 has been shown to be crucial for ES cell survival and tumor growth. However, its regulation is still enigmatic. To date, no functionally significant post-translational modifications of EWS-FLI1 have been shown. Since ES are sensitive to histone deacetylase inhibitors (HDI), and these inhibitors are advancing in clinical trials, we sought to identify if EWS-FLI1 is directly acetylated. We convincingly show acetylation of the C-terminal FLI1 (FLI1-CTD) domain, which is the DNA binding domain of EWS-FLI1. In vitro acetylation studies showed that acetylated FLI1-CTD has higher DNA binding activity than the non-acetylated protein. Over-expression of PCAF or treatment with HDI increased the transcriptional activity of EWS-FLI1, when co-expressed in Cos7 cells. However, our data that evaluates the acetylation of full-length EWS-FLI1 in ES cells remains unclear, despite creating acetylation specific antibodies to four potential acetylation sites. We conclude that EWS-FLI1 may either gain access to chromatin as a result of histone acetylation or undergo regulation by direct acetylation. These data should be considered when patients are treated with HDAC inhibitors. Further investigation of this phenomenon will reveal if this potential acetylation has an impact on tumor response.

Timeline

Login to access the full chart related to this output.

If you don’t have an account, click here to discover Explorer

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 30 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United Kingdom 1 3%
United States 1 3%
Unknown 28 93%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 13 43%
Researcher 4 13%
Student > Doctoral Student 3 10%
Student > Bachelor 2 7%
Professor 2 7%
Other 3 10%
Unknown 3 10%
Readers by discipline Count As %
Agricultural and Biological Sciences 14 47%
Biochemistry, Genetics and Molecular Biology 5 17%
Medicine and Dentistry 5 17%
Arts and Humanities 1 3%
Neuroscience 1 3%
Other 0 0%
Unknown 4 13%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 07 September 2012.
All research outputs
#22,758,309
of 25,373,627 outputs
Outputs from Frontiers in oncology
#15,917
of 22,416 outputs
Outputs of similar age
#228,476
of 250,101 outputs
Outputs of similar age from Frontiers in oncology
#100
of 161 outputs
Altmetric has tracked 25,373,627 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 22,416 research outputs from this source. They receive a mean Attention Score of 3.0. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 250,101 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 161 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.