↓ Skip to main content

Spot Weight Adaptation for Moving Target in Spot Scanning Proton Therapy

Overview of attention for article published in Frontiers in oncology, May 2015
Altmetric Badge

About this Attention Score

  • Good Attention Score compared to outputs of the same age (65th percentile)
  • Good Attention Score compared to outputs of the same age and source (76th percentile)

Mentioned by

twitter
1 X user
patent
24 patents

Citations

dimensions_citation
1 Dimensions

Readers on

mendeley
22 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Spot Weight Adaptation for Moving Target in Spot Scanning Proton Therapy
Published in
Frontiers in oncology, May 2015
DOI 10.3389/fonc.2015.00119
Pubmed ID
Authors

Paul Morel, Xiaodong Wu, Guillaume Blin, Stéphane Vialette, Ryan Flynn, Daniel Hyer, Dongxu Wang

Abstract

This study describes a real-time spot weight adaptation method in spot-scanning proton therapy for moving target or moving patient, so that the resultant dose distribution closely matches the planned dose distribution. The method proposed in this study adapts the weight (MU) of the delivering pencil beam to that of the target spot; it will actually hit during patient/target motion. The target spot that a certain delivering pencil beam may hit relies on patient monitoring and/or motion modeling using four-dimensional (4D) CT. After the adapted delivery, the required total weight [Monitor Unit (MU)] for this target spot is then subtracted from the planned value. With continuous patient motion and continuous spot scanning, the planned doses to all target spots will eventually be all fulfilled. In a proof-of-principle test, a lung case was presented with realistic temporal and motion parameters; the resultant dose distribution using spot weight adaptation was compared to that without using this method. The impact of the real-time patient/target position tracking or prediction was also investigated. For moderate motion (i.e., mean amplitude 0.5 cm), D95% to the planning target volume (PTV) was only 81.5% of the prescription (RX) dose; with spot weight adaptation PTV D95% achieves 97.7% RX. For large motion amplitude (i.e., 1.5 cm), without spot weight adaptation PTV D95% is only 42.9% of RX; with spot weight adaptation, PTV D95% achieves 97.7% RX. Larger errors in patient/target position tracking or prediction led to worse final target coverage; an error of 3 mm or smaller in patient/target position tracking is preferred. The proposed spot weight adaptation method was able to deliver the planned dose distribution and maintain target coverage when patient motion was involved. The successful implementation of this method would rely on accurate monitoring or prediction of patient/target motion.

Timeline

Login to access the full chart related to this output.

If you don’t have an account, click here to discover Explorer

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 22 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 22 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 6 27%
Researcher 3 14%
Student > Bachelor 2 9%
Other 2 9%
Professor > Associate Professor 2 9%
Other 4 18%
Unknown 3 14%
Readers by discipline Count As %
Medicine and Dentistry 6 27%
Physics and Astronomy 4 18%
Engineering 3 14%
Business, Management and Accounting 1 5%
Economics, Econometrics and Finance 1 5%
Other 3 14%
Unknown 4 18%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 4. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 20 August 2024.
All research outputs
#8,678,263
of 26,414,132 outputs
Outputs from Frontiers in oncology
#3,314
of 23,127 outputs
Outputs of similar age
#94,019
of 280,518 outputs
Outputs of similar age from Frontiers in oncology
#15
of 69 outputs
Altmetric has tracked 26,414,132 research outputs across all sources so far. This one has received more attention than most of these and is in the 66th percentile.
So far Altmetric has tracked 23,127 research outputs from this source. They receive a mean Attention Score of 3.0. This one has done well, scoring higher than 84% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 280,518 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 65% of its contemporaries.
We're also able to compare this research output to 69 others from the same source and published within six weeks on either side of this one. This one has done well, scoring higher than 76% of its contemporaries.