↓ Skip to main content

Spontaneous Transformation of Murine Oviductal Epithelial Cells: A Model System to Investigate the Onset of Fallopian-Derived Tumors

Overview of attention for article published in Frontiers in oncology, July 2015
Altmetric Badge

Mentioned by

twitter
2 X users

Citations

dimensions_citation
23 Dimensions

Readers on

mendeley
29 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Spontaneous Transformation of Murine Oviductal Epithelial Cells: A Model System to Investigate the Onset of Fallopian-Derived Tumors
Published in
Frontiers in oncology, July 2015
DOI 10.3389/fonc.2015.00154
Pubmed ID
Authors

Michael P. Endsley, Georgette Moyle-Heyrman, Subbulakshmi Karthikeyan, Daniel D. Lantvit, David A. Davis, Jian-Jun Wei, Joanna E. Burdette

Abstract

High-grade serous carcinoma (HGSC) is the most lethal ovarian cancer histotype. The fallopian tube secretory epithelial cells (FTSECs) are a proposed progenitor cell type. Genetically altered FTSECs form tumors in mice; however, a spontaneous HGSC model has not been described. Apart from a subpopulation of genetically predisposed women, most women develop ovarian cancer spontaneously, which is associated with aging and lifetime ovulations. A murine oviductal cell line (MOE(LOW)) was developed and continuously passaged in culture to mimic cellular aging (MOE(HIGH)). The MOE(HIGH) cellular model exhibited a loss of acetylated tubulin consistent with an outgrowth of secretory epithelial cells in culture. MOE(HIGH) cells proliferated significantly faster than MOE(LOW), and the MOE(HIGH) cells produced more 2D foci and 3D soft agar colonies as compared to MOE(LOW) MOE(HIGH) were xenografted into athymic female nude mice both in the subcutaneous and the intraperitoneal compartments. Only the subcutaneous grafts formed tumors that were negative for cytokeratin, but positive for oviductal markers, such as oviductal glycoprotein 1 and Pax8. These tumors were considered to be poorly differentiated carcinoma. The differential molecular profiles between MOE(HIGH) and MOE(LOW) were determined using RNA-Seq and confirmed by protein expression to uncover pathways important in transformation, like the p53 pathway, the FOXM1 pathway, WNT signaling, and splicing. MOE(HIGH) had enhanced protein expression of c-myc, Cyclin E, p53, and FOXM1 with reduced expression of p21. MOE(HIGH) were also less sensitive to cisplatin and DMBA, which induce lesions typically repaired by base-excision repair. A model of spontaneous tumorogenesis was generated starting with normal oviductal cells. Their transition to cancer involved alterations in pathways associated with high-grade serous cancer in humans.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 29 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 29 100%

Demographic breakdown

Readers by professional status Count As %
Student > Master 5 17%
Student > Bachelor 4 14%
Student > Ph. D. Student 4 14%
Student > Doctoral Student 3 10%
Researcher 2 7%
Other 3 10%
Unknown 8 28%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 8 28%
Medicine and Dentistry 7 24%
Agricultural and Biological Sciences 3 10%
Pharmacology, Toxicology and Pharmaceutical Science 1 3%
Business, Management and Accounting 1 3%
Other 2 7%
Unknown 7 24%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 26 August 2015.
All research outputs
#19,942,887
of 25,371,288 outputs
Outputs from Frontiers in oncology
#9,314
of 22,414 outputs
Outputs of similar age
#176,543
of 258,627 outputs
Outputs of similar age from Frontiers in oncology
#45
of 71 outputs
Altmetric has tracked 25,371,288 research outputs across all sources so far. This one is in the 18th percentile – i.e., 18% of other outputs scored the same or lower than it.
So far Altmetric has tracked 22,414 research outputs from this source. They receive a mean Attention Score of 3.0. This one is in the 49th percentile – i.e., 49% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 258,627 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 26th percentile – i.e., 26% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 71 others from the same source and published within six weeks on either side of this one. This one is in the 16th percentile – i.e., 16% of its contemporaries scored the same or lower than it.