↓ Skip to main content

Extracellular Vesicles As Modulators of Tumor Microenvironment and Disease Progression in Glioma

Overview of attention for article published in Frontiers in oncology, July 2017
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
51 Dimensions

Readers on

mendeley
87 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Extracellular Vesicles As Modulators of Tumor Microenvironment and Disease Progression in Glioma
Published in
Frontiers in oncology, July 2017
DOI 10.3389/fonc.2017.00144
Pubmed ID
Authors

Abir Mondal, Divya Kumari Singh, Suchismita Panda, Anjali Shiras

Abstract

Diffuse gliomas are lethal tumors of the central nervous system (CNS) characterized by infiltrative growth, aggressive nature, and therapeutic resistance. The recent 2016 WHO classification for CNS tumors categorizes diffuse glioma into two major types that include IDH wild-type glioblastoma, which is the predominant type and IDH-mutant glioblastoma, which is less common and displays better prognosis. Recent studies suggest presence of a distinct cell population with stem cell features termed as glioma stem cells (GSCs) to be causal in driving tumor growth in glioblastoma. The presence of a stem and progenitor population possibly makes glioblastoma highly heterogeneous. Significantly, tumor growth is driven by interaction of cells residing within the tumor with the surrounding milieu termed as the tumor microenvironment. It comprises of various cell types such as endothelial cells, secreted factors, and the surrounding extracellular matrix, which altogether help perpetuate the proliferation of GSCs. One of the important mediators critical to the cross talk is extracellular vesicles (EVs). These nano-sized vesicles play important roles in intercellular communication by transporting bioactive molecules into the surrounding milieu, thereby altering cellular functions and/or reprogramming recipient cells. With the growing information on the contribution of EVs in modulation of the tumor microenvironment, it is important to determine their role in both supporting as well as promoting tumor growth in glioma. In this review, we provide a comprehensive overview of the role of EVs in tumor progression and glioma pathogenesis.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 87 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 87 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 14 16%
Student > Bachelor 13 15%
Student > Master 9 10%
Student > Doctoral Student 6 7%
Researcher 4 5%
Other 10 11%
Unknown 31 36%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 19 22%
Medicine and Dentistry 14 16%
Agricultural and Biological Sciences 10 11%
Neuroscience 5 6%
Immunology and Microbiology 2 2%
Other 6 7%
Unknown 31 36%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 17 July 2017.
All research outputs
#22,764,772
of 25,382,440 outputs
Outputs from Frontiers in oncology
#15,925
of 22,428 outputs
Outputs of similar age
#285,327
of 325,782 outputs
Outputs of similar age from Frontiers in oncology
#67
of 79 outputs
Altmetric has tracked 25,382,440 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 22,428 research outputs from this source. They receive a mean Attention Score of 3.0. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 325,782 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 79 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.