↓ Skip to main content

Ataxia-Telangiectasia Mutated Kinase in the Control of Oxidative Stress, Mitochondria, and Autophagy in Cancer: A Maestro With a Large Orchestra

Overview of attention for article published in Frontiers in oncology, March 2018
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
4 X users

Citations

dimensions_citation
45 Dimensions

Readers on

mendeley
80 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Ataxia-Telangiectasia Mutated Kinase in the Control of Oxidative Stress, Mitochondria, and Autophagy in Cancer: A Maestro With a Large Orchestra
Published in
Frontiers in oncology, March 2018
DOI 10.3389/fonc.2018.00073
Pubmed ID
Authors

Venturina Stagni, Claudia Cirotti, Daniela Barilà

Abstract

Ataxia-telangiectasia mutated kinase (ATM) plays a central role in the DNA damage response (DDR) and mutations in its gene lead to the development of a rare autosomic genetic disorder, ataxia telangiectasia (A-T) characterized by neurodegeneration, premature aging, defects in the immune response, and higher incidence of lymphoma development. The ability of ATM to control genome stability several pointed to ATM as tumor suppressor gene. Growing evidence clearly support a significant role of ATM, in addition to its master ability to control the DDR, as principle modulator of oxidative stress response and mitochondrial homeostasis, as well as in the regulation of autophagy, hypoxia, and cancer stem cell survival. Consistently, A-T is strongly characterized by aberrant oxidative stress, significant inability to remove damaged organelles such as mitochondria. These findings raise the question whether ATM may contribute to a more general hijack of signaling networks in cancer, therefore, playing a dual role in this context. Indeed, an unexpected tumorigenic role for ATM, in particular, tumor contexts has been demonstrated. Genetic inactivation of Beclin-1, an autophagy regulator, significantly reverses mitochondrial abnormalities and tumor development in ATM-null mice, independently of DDR. Furthermore, ATM sustains cancer stem cells survival by promoting the autophagic flux and ATM kinase activity is enhanced in HER2-dependent tumors. This mini-review aims to shed new light on the complexity of these new molecular circuits through which ATM may modulate cancer progression and to highlight a novel role of ATM in the control of proteostasis.

Timeline

Login to access the full chart related to this output.

If you don’t have an account, click here to discover Explorer

X Demographics

X Demographics

The data shown below were collected from the profiles of 4 X users who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 80 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 80 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 15 19%
Researcher 12 15%
Student > Bachelor 9 11%
Student > Master 7 9%
Other 5 6%
Other 8 10%
Unknown 24 30%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 26 33%
Agricultural and Biological Sciences 12 15%
Medicine and Dentistry 7 9%
Neuroscience 4 5%
Social Sciences 1 1%
Other 3 4%
Unknown 27 34%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 05 July 2021.
All research outputs
#17,404,775
of 26,311,549 outputs
Outputs from Frontiers in oncology
#6,943
of 22,970 outputs
Outputs of similar age
#220,710
of 355,882 outputs
Outputs of similar age from Frontiers in oncology
#57
of 123 outputs
Altmetric has tracked 26,311,549 research outputs across all sources so far. This one is in the 31st percentile – i.e., 31% of other outputs scored the same or lower than it.
So far Altmetric has tracked 22,970 research outputs from this source. They receive a mean Attention Score of 3.2. This one has gotten more attention than average, scoring higher than 64% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 355,882 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 35th percentile – i.e., 35% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 123 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 50% of its contemporaries.