↓ Skip to main content

MicroRNAs and DNA-Damaging Drugs in Breast Cancer: Strength in Numbers

Overview of attention for article published in Frontiers in oncology, September 2018
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
2 X users

Citations

dimensions_citation
16 Dimensions

Readers on

mendeley
40 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
MicroRNAs and DNA-Damaging Drugs in Breast Cancer: Strength in Numbers
Published in
Frontiers in oncology, September 2018
DOI 10.3389/fonc.2018.00352
Pubmed ID
Authors

Ilaria Plantamura, Giulia Cosentino, Alessandra Cataldo

Abstract

MicroRNAs are a class of small non-coding regulatory RNAs playing key roles in cancer. Breast cancer is the most common female malignancy worldwide and is categorized into four molecular subtypes: luminal A and B, HER2+ and triple-negative breast cancer (TNBC). Despite the development of multiple targeted therapies for luminal and HER2+ breast tumors, TNBC lacks specific therapeutic approaches, thus they are treated mainly with radio- and chemotherapy. The effectiveness of these therapeutic regimens is based on their ability to induce DNA damage, which is differentially resolved and repaired by normal vs. cancer cells. Recently, drugs directly targeting DNA repair mechanisms, such as PARP inhibitors, have emerged as attractive candidates for the future molecular targeted-therapy in breast cancer. These compounds prevent cancer cells to appropriate repair DNA double strand breaks and induce a phenomenon called synthetic lethality, that results from the concurrent inhibition of PARP and the absence of functional BRCA genes which prompt cell death. MicroRNAs are relevant players in most of the biological processes including DNA damage repair mechanisms. Consistently, the downregulation of DNA repair genes by miRNAs have been probe to improve the therapeutic effect of genotoxic drugs. In this review, we discuss how microRNAs can sensitize cancer cells to DNA-damaging drugs, through the regulation of DNA repair genes, and examine the most recent findings on their possible use as a therapeutic tools of treatment response in breast cancer.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 40 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 40 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 7 18%
Student > Master 6 15%
Student > Ph. D. Student 5 13%
Student > Bachelor 4 10%
Librarian 2 5%
Other 3 8%
Unknown 13 33%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 8 20%
Medicine and Dentistry 5 13%
Agricultural and Biological Sciences 4 10%
Pharmacology, Toxicology and Pharmaceutical Science 2 5%
Economics, Econometrics and Finance 2 5%
Other 3 8%
Unknown 16 40%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 21 September 2018.
All research outputs
#19,954,338
of 25,385,509 outputs
Outputs from Frontiers in oncology
#9,328
of 22,432 outputs
Outputs of similar age
#253,124
of 345,580 outputs
Outputs of similar age from Frontiers in oncology
#111
of 186 outputs
Altmetric has tracked 25,385,509 research outputs across all sources so far. This one is in the 18th percentile – i.e., 18% of other outputs scored the same or lower than it.
So far Altmetric has tracked 22,432 research outputs from this source. They receive a mean Attention Score of 3.0. This one is in the 49th percentile – i.e., 49% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 345,580 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 22nd percentile – i.e., 22% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 186 others from the same source and published within six weeks on either side of this one. This one is in the 33rd percentile – i.e., 33% of its contemporaries scored the same or lower than it.