↓ Skip to main content

Biophysics, pathophysiology, and pharmacology of ion channel gating pores

Overview of attention for article published in Frontiers in Pharmacology, April 2014
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Good Attention Score compared to outputs of the same age and source (74th percentile)

Mentioned by

twitter
4 X users

Citations

dimensions_citation
76 Dimensions

Readers on

mendeley
137 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Biophysics, pathophysiology, and pharmacology of ion channel gating pores
Published in
Frontiers in Pharmacology, April 2014
DOI 10.3389/fphar.2014.00053
Pubmed ID
Authors

Adrien Moreau, Pascal Gosselin-Badaroudine, Mohamed Chahine

Abstract

Voltage sensor domains (VSDs) are a feature of voltage gated ion channels (VGICs) and voltage sensitive proteins. They are composed of four transmembrane (TM) segments (S1-S4). Currents leaking through VSDs are called omega or gating pore currents. Gating pores are caused by mutations of the highly conserved positively charged amino acids in the S4 segment that disrupt interactions between the S4 segment and the gating charge transfer center (GCTC). The GCTC separates the intracellular and extracellular water crevices. The disruption of S4-GCTC interactions allows these crevices to communicate and create a fast activating and non-inactivating alternative cation-selective permeation pathway of low conductance, or a gating pore. Gating pore currents have recently been shown to cause periodic paralysis phenotypes. There is also increasing evidence that gating pores are linked to several other familial diseases. For example, gating pores in Nav1.5 and Kv7.2 channels may underlie mixed arrhythmias associated with dilated cardiomyopathy (DCM) phenotypes and peripheral nerve hyperexcitability (PNH), respectively. There is little evidence for the existence of gating pore blockers. Moreover, it is known that a number of toxins bind to the VSD of a specific domain of Na(+) channels. These toxins may thus modulate gating pore currents. This focus on the VSD motif opens up a new area of research centered on developing molecules to treat a number of cell excitability disorders such as epilepsy, cardiac arrhythmias, and pain. The purpose of the present review is to summarize existing knowledge of the pathophysiology, biophysics, and pharmacology of gating pore currents and to serve as a guide for future studies aimed at improving our understanding of gating pores and their pathophysiological roles.

Timeline

Login to access the full chart related to this output.

If you don’t have an account, click here to discover Explorer

X Demographics

X Demographics

The data shown below were collected from the profiles of 4 X users who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 137 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Germany 1 <1%
Turkey 1 <1%
Korea, Republic of 1 <1%
United Kingdom 1 <1%
Philippines 1 <1%
Unknown 132 96%

Demographic breakdown

Readers by professional status Count As %
Researcher 31 23%
Student > Ph. D. Student 27 20%
Student > Bachelor 18 13%
Student > Master 10 7%
Student > Doctoral Student 8 6%
Other 22 16%
Unknown 21 15%
Readers by discipline Count As %
Agricultural and Biological Sciences 41 30%
Medicine and Dentistry 21 15%
Biochemistry, Genetics and Molecular Biology 19 14%
Neuroscience 15 11%
Chemistry 5 4%
Other 10 7%
Unknown 26 19%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 3. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 29 September 2014.
All research outputs
#13,332,065
of 22,751,628 outputs
Outputs from Frontiers in Pharmacology
#3,933
of 16,003 outputs
Outputs of similar age
#109,851
of 225,522 outputs
Outputs of similar age from Frontiers in Pharmacology
#19
of 74 outputs
Altmetric has tracked 22,751,628 research outputs across all sources so far. This one is in the 41st percentile – i.e., 41% of other outputs scored the same or lower than it.
So far Altmetric has tracked 16,003 research outputs from this source. They receive a mean Attention Score of 4.9. This one has gotten more attention than average, scoring higher than 74% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 225,522 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 50% of its contemporaries.
We're also able to compare this research output to 74 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 74% of its contemporaries.